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Abstract—The autonomous driving of robots is coming and
requires precise and reliable positioning information with low-
cost sensors for the mass market. In this paper, we propose a
tightly coupled sensor fusion of multiple complementary sensors
including Global Navigation Satellite System (GNSS) receivers
with Real-Time Kinematics (RTK), Inertial Measurement Uni ts
(IMUs), wheel odometry, Local Positioning System (LPS) and
Visual Positioning.
The focus of this paper is on the integration of LPS and vision
since the coupling of GNSS-RTK, INS and wheel odometry
is already state of the art. We include the positions of the
LPS anchors and the bearing vectors and distances from the
robot’s camera towards the patch features as state vectors in our
Kalman filter, and show the achievable positioning accuracies.
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1. INTRODUCTION

In this section, we briefly introduce the complementary prop-
erties of various positioning sensors including GNSS re-
ceivers, IMUs, wheel odometry sensors, a Local Positioning
Systems (LPS), and camera-based Visual Positioning. Tab. 1
lists these5 positioning sensors and the favourable conditions
for these sensors.

In this section, we also briefly introduce the ANavS Multi-
Sensor RTK module, that is used in this work. The module
is shown in Fig. 1 and carries multiple low-cost sensors,
communication interfaces and a processor for performing the
sensor fusion. The key features of the ANavS Multi-Sensor
RTK module are provided in the following list.

• 1 to 3 integrated GNSS receivers (u-blox LEA M8T)
for RTK positioning and attitude determination

• integrated inertial sensors (MPU 9250 from Invensense
and optionally also ADIS 16460 from Analog Devices)
and barometer for robust positioning

• integrated CAN-bus interface for
odometry and CSI-interface for camera

• integrated LTE module for reception
of RTK corrections

• integrated processor for Multi-Sensor, Multi-GNSS
tightly coupled RTK positioning

• integrated USB, WiFi and Ethernet interfaces

Table 1. Comparison of complementary positioning
sensors: description of conditions resulting in high

performance for each individual sensor.

Sensor Conditions enabling
a high positioning accuracy

GNSS receiver open-sky conditions
with at least 4 visible satellites
with continuous phase tracking

Inertial Measurement any area for a few seconds
Unit (IMU) after initialization
wheel odometry any area with paved roads
Local Positioning any area with line of sight
System (LPS) to at least 3 anchors
Visual positioning any area with clear textures,

e.g. road markings and road signs,
trees and houses, parked cars, etc.

Figure 1. Multi-Sensor RTK module of ANavS: On the left
side, there are 3 GNSS receivers with SMA antenna

connectors. A commercial-grade IMU is in the middle. The
processor for running the sensor fusion is plugged-in on the

top. The SMA connector on the right side is used for the
GSM/ LTE antenna. The antenna on the upper left side is a

WiFi antenna that is integrated into the casing.
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2. LOCAL POSITIONING SYSTEM

In this section, we describe the LPS and its integration into
the sensor fusion similar to [3]. There are two types of LPS
range measurements: the first type of range measurements
refers to the range between a certain anchor (with indexk)
and the user/ robot (with indexu), and is modeled as

rku = ‖~xu − ~x k‖+∆rkMPu
+ ηku

=
(

~e k
u

)T (
~xu − ~xk

)

+∆rkMPu
+ ηku, (1)

with the following notations:

~xu user/ robot position
~x k anchor position
~e k
u = ~xu−~x k

‖~xu−~x k‖
normalized direction vector
between anchor and robot

∆rkMPu
multipath error of LPS range meas.

ηku noise of LPS range measurement

The second type of range measurements refers to the anchor-
to-anchor measurements. The range measurement between
anchorsk andl is modeled similar to Eq. (1) as

rkl = ‖~x k − ~x l‖+∆rklMPu
+ ηklu

=
(

~e kl
)T (

~x k − ~x l
)

+∆rklMPu
+ ηklu . (2)

We determine the positions of the robot and all anchors jointly
in a Kalman filter. The anchor-to-robot and anchor-to-anchor
measurements are stacked in a single column vector as

z =
(

r1u, . . . , r
K
u , r12, . . . , r1K , . . . , r(K−1)K

)T

, (3)

which includesK + (K−1)K
2 independent measurements.

The LPS can not provide a unique solution, i.e. the positions
of all anchors and the robot can be shifted by a common, ar-
bitrary vector and be rotated by a common, arbitrary rotation
matrix without affecting the range measurements. This leaves
6 degrees of freedom. We use them

• to set the coordinate center of the Local Positioning System
(LPS) to the position of the first LPS anchor

• to define the x-axis of the coordinate frame,
such that it points from the coordinate center towards the
second LPS anchor

• to define the y-axis of the coordinate frame,
such that it lies in the plane spanned by the first two anchors
and the third anchor

• to define the z-axis of the coordinate frame,
such that it complements a right-hand coordinate frame

Fig. 2 shows the LPS coordinate frame based on the positions
of three anchors.

The{x, y, z} coordinates of the anchor positions in the LPS
coordinate frame are noted as

~x 1 =

(

0
0
0

)

, ~x 2 =

(

d2x
0
0

)

, ~x 3 =

(

d3x
d3y
0

)

,

~x 4 =





d4x
d4y
d4z



 , . . . , ~xK =





dKx
dKy
dKz



 , (4)

where6 coordinates are0. The remaining3(K − 2) coordi-
nates are unknown and have to be estimated in the Kalman
filter.

The state vector comprises the unknown position coordinates
of the robot and all anchors, and the velocity~vu of the robot,
i.e.

x =
(

~x T
u , ~v T

u , d2x, d
3
x, d

3
y, (~x

4)T, . . . , (~xK)T
)T

. (5)

The coordinates of the anchor points are assumed to be
constant and the robot is assumed to move with a low
and almost constant speed. Thus, the state space model is
straightforward, i.e. we assume constant coordinates for the
anchor points and very small process noise for the robot’s
acceleration.

We a use a standard Kalman filter for the LPS, and consider
the following aspects:

• iterative approach required for state update due to lineariza-
tion of range measurements

• certain movement required for convergence of positions of
anchors and robot

3rd anchor

z

y

x

robot

1st anchor 2nd anchor

Figure 2. Local Positioning System (LPS): The right-hand
coordinate frame is spanned by the locations of three

anchors.

3. INTEGRATION OF L OCAL POSITIONING
SYSTEM INTO SENSOR FUSION

In this section, we briefly describe the sensor fusion of
the Local Positioning System (LPS), the IMU, and wheel
odometry. We perform a tightly coupled sensor fusion as
shown in Fig. 3, i.e. the raw measurements of all sensors
are directly used to estimate the state vector comprising the
position, velocity, acceleration, attitude angles and angular
rates of the robot, the anchor positions, and the IMU and
odometry biases. A standard extended Kalman filter is used
for the sensor fusion as described by Brown and Hwang in
[4].

4. VISUAL -I NERTIAL ODOMETRY

In this section, we describe some fundamentals for visual-
inertial odometry with a monocular camera. We use the
Robust Visual-Inertial Odometry (ROVIO) method of Blösch
et al. and closely follow their description in [1] [2].
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range measurements

Prediction of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and
biases of inertial and odometry sensors

Update of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and
biases of inertial and odometry sensors

Kalman filter
LPS/ INS/ odometry

Inertial sensor measurements:
3D accelerations and
3D angular rates

Wheel odometry measurements:
wheel speeds

position, velocity, acceleration

LPS anchor−to−robot

attitude, angular rates of sensor fusion

and anchor−to−anchor

Figure 3. Sensor Fusion of LPS, INS and Odometry: A Kalman filter is used to predict and update the state vector at every
measurement epoch. The state vector includes the position,velocity, acceleration, attitude angles and angular ratesof the

robot, the anchor positions, and the IMU and odometry biases.

Projection model and linear warping

In this subsection, we discuss the relationship between the
pixel coordinates of a landmark in two subsequent image
frames. The pixel coordinates~p l

n of landmarkl in framen
can be expressed in terms of the camera modelπ with known
intrinsic calibration, and the bearing vector~µl

n pointing from
the camera to the landmark:

~p l
n = π

(

~µ l
n

)

. (6)

Solving this equation for~µ l
n yields

~µ l
n = π−1

(

~p l
n

)

. (7)

The bearing vector is changing with the movement of the
robot/ camera and, therefore, predicted to the next camera
frame with a certain process model, i.e.

~µ l
n+1 = f(~µ l

n), (8)

and then re-projected to pixel coordinates:

~p l
n+1 = π

(

~µ l
n+1

)

. (9)

Concatenating the projections of Eq. (7) to (9) relates the
pixel coordinates of a certain landmark in two subsequent
frames:

~p l
n+1 = π

(

f
(

π−1
(

~p l
n

)))

(10)

We linearize these projections for the Kalman filter and obtain
the following linear warping matrix:

D =
∂~p l

n+1

∂~p l
n

=
∂π(~µ l

n+1)

∂~µ l
n+1

∂f(~µ l
n)

∂~µ l
n

∂π−1(~p l
n)

∂~p l
n

. (11)

Photometric error

The photometric error is defined as the pixel-wise intensity
difference between a patch feature (as extracted from a pre-
vious image frame) and the patch feature at the predicted

location of the current image. The patch distortion due to the
movement of the camera/ robot is considered by the warping
matrix of Eq. (11). Blösch et al. also take changes in
illumination between the different image frames into account
by introducing a scaling factora and biasb. Thus, the
photometric error follows as

εln,j(~p
l, Pn, In, D) = Pn(~p

l
j )−aIn(~p

lsln+D~p l
j )−b, (12)

with the following notations:

Pn intensity of patch feature at framen
~p l
j coordinates of patch pixel of patch feature

relative to center of patch feature
~p l predicted coordinates of centre ofl-th patch feature

relative to center of image
In intensity of image at framen
sln scaling factor accounting for downsampling
a intensity model parameter to account

for changes in illumination
b intensity model parameter to account

for changes in illumination

This photometric error is used directly as measurement to
update the state vector in our tightly-coupled sensor fusion
with a Kalman filter.

5. INTEGRATION OF V ISUAL -I NERTIAL
ODOMETRY INTO SENSOR FUSION

In this section, we describe the integration of the visual-
inertial odometry into the sensor fusion. Fig. 4 shows
the architecture for the sensor fusion of GNSS, INS, wheel-
odometry and visual-inertial odometry. The LPS measure-
ments are not considered in this section since both GNSS and
LPS provide position information.

The visual-inertial odometry uses a Kalman filter that pro-
cesses the images from a monocular camera and the mea-
surements from an inertial sensor. Our implementation is
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carrier phase ambiguities,
pseudorange multipath errors
and biases of inertial sensor
and odometry

Update of states including

Ambiguity fixing of GNSS
DD carrier phase measurements
of attitde baseline

Ambiguity fixing of GNSS
DD carrier phase measurements
of RTK baseline

Camera/ INS
Kalman filter

position, velocity,
acceleration, attitude,
angular rates of
sensor fusion

Measurements of 1−3 GNSS
receivers and reference station:
pseudorange, carrier phase
and Doppler measurements

Inertial sensor measurements:
3D accelerations and
3D angular rates

Wheel odometry measurements:
wheel speeds

Predition of states including
position, velocity, acceleration,
attitude angles, angular rates,
carrier phase ambiguities,
pseudorange multipath errors
and biases of inertial sensor
and odometry

position, velocity, attitude, biases of IMU,
State prediction including

Search of features in camera images

State update including
position, velocity, attitude, biases of IMU,

Camera images

GNSS/ INS/ odometry/ vision
Kalman filter

bearing vectors and distances of each patch feature

position, velocity, acceleration,

bearing vectors and distances of each patch feature

attitude angles, angular rates,

Figure 4. Architecture for Sensor Fusion of GNSS, INS, wheel-odometry and visual-inertial odometry in Kalman filter.

based on the ROVIO (RObust Visual-Inertial Odometry)-
framework of Blösch et al. [1] and [2], that tracks thebearing
vector anddistance of each patch feature as state parameter
besides the position, velocity, attitude and biases of the
inertial sensor. The individual steps of the visual-inertial
odometry are highlighted in red. The first step includes the
prediction of the state parameters using inertial measure-
ments. Subsequently, the locations of the feature patches
are searched in the new camera image around the predicted
locations of the feature patches. Finally, the state vectoris
updated based on the found feature patches.

The obtained position, velocity and attitude estimates serve
as measurements for the main Kalman filter, that also uses
the GNSS-, INS- and wheel-odometry measurements to up-
date its state vector. The state vector of the main Kalman
filter includes the position, velocity, acceleration, attitude
angles, angular rates, carrier phase ambiguities, pseudorange
multipath errors, and biases of the inertial sensor and wheel
odometry. A standard Kalman filter is used for this overall
sensor fusion and the respective state prediction and state
update steps are highlighted in blue in Fig. 4.

6. MEASUREMENT RESULTS

In this section, we describe the measurement results. We
start with the LPS/ INS/ ODO tightly coupled positioning
system using the TREK 1000 from Decawave as LPS and
the IMU MPU 9250 from Invensense. The performance is
tested with two set-ups: a model train (without odometry) and

an autonomous lawnmower (with odometry). Subsequently,
we present the benefit of integrating visual-inertial odometry
into the GNSS/ INS/ ODO tighly coupled RTK positioning
with an autonomous lawnmower. The sensors of the ANavS
Multi-Sensor RTK module and the Raspberry Pi camera are
used.

Fig. 5 shows the performance of the LPS with a model
train. The positions of three anchors and the robot are jointly
estimated. The track of the model train is a closed loop,
which enables an analysis of the repeatability of the position
solution. The enlarged view provides two insights: First,
the point cloud at (3.3 m, 1.95 m) refers to the initial static
position, and has a standard deviation of a few centimeters
only. Second, the multiple parallel lines refer to different
rounds of the model train and indicate a consistent position
solution.

Fig. 6 includes a comparison between the tightly coupled
LPS/ INS and the tightly Multi-GNSS/ INS RTK positioning.
The closed-loop track is installed at the roof-top of ANavS
with open-sky conditions, i.e. both satellite signals and an-
chor signals are received without obstructions. Both systems
are coupled with an IMU and provide consistent solutions
with an uncertainty of less than10 cm for most epochs. The
systematic offsets between both positioning solutions around
the lower left part and also at the rightmost part of the track
are LPS errors that occur if the angle between an LPS antenna
plane and the signal path is very small.

Now, the performance of the LPS/ INS/ ODO-tightly coupled
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Figure 5. Performance analysis of Local Positioning
System (LPS) with a model train.
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Figure 6. Comparison between ANavS tightly coupled
Multi-GNSS/ INS RTK positioning and ANavS tightly

coupled LPS/ INS positioning with model train.

system is analyzed in a typical outdoor environment with
surrounding trees. Fig. 7 includes a comparison of horizontal
position estimates between the ANavS Multi-Sensor Fusion
of LPS, wheel odometry and inertial sensor with the reference
solution of a tachymeter from Leica: In principle, both
solutions are well aligned for almost all epochs. A slight
offset of the LPS/Odo/IMU solution can be observed near
the start at (0,0) since the Kalman filter needs some time
to converge. The tachymeter solution has occasional gaps
due to the lack of a line of sight between tachymeter and
robot. Moreover, a temporary reduction of accuracy can be
observed for the LPS/ODO/IMU solution in areas where the
LPS signals from at least one anchor point were shadowed or
blocked, e.g. around (1.5 m, -3.0 m).

Fig. 8 includes a histogram of the horizontal position de-
viation between the ANavS Multi-Sensor Fusion of Local
Positioning System, wheel odometry and inertial sensor and
the tachymeter-based reference: The position offset remains
below15 cm for95 % of the epochs.

Fig. 9 shows a comparison of the positioning trajectories

-4 -2 0 2 4 6 8 10
x [m]

-8

-6

-4

-2

0

2

y 
[m

]

Tachymeter
ANavS

Figure 7. Comparison of horizontal position estimates
between the ANavS Multi-Sensor Fusion of Local

Positioning System, wheel odometry and inertial sensor with
the tachymeter-based reference solution.

Figure 8. Histogram of horizontal position deviation
between ANavS Multi-Sensor Fusion of Local Positioning

System, wheel odometry and inertial sensor and
tachymeter-based reference.

obtained with and without visual odometry. The trajectory
starts with a rectangular, repetitive pattern at an open field.
The initial convergence of the RTK float solution is also
shown. The position estimates with and without visual
positioning are well-aligned. This indicates the correctness
of positioning with and without visual odometry. After the
rectangular pattern, the robot drove towards trees and bushes
(upper part of trajectory) to test the positioning performance
in more challenging conditions. We can observe a certain
deviation between the position trajectories with and without
visual odometry. The benefit of the visual odometry becomes
apparent at the RTK refixing after passing the sections with
trees and bushes: The position correction is only20 cm with
visual odometry compared to30 cm without visual odometry.
The diagram also shows three highlighted locations. The
respective camera images are provided in Fig. 10. The illu-
mination slightly varies between the images. The multilevel
patch features are determined by ROVIO, and represented
by squares. Green color denotes successfully tracked patch
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features and red color denotes rejected patches, whereas a
feature patch is rejected if the innovation residuals at more
than 2 of the 4 checked surrounding locations (labeled by
dots) are not higher than for the predicted location.

The final (i.e. after iterative convergence) location of each
landmark is shown with a small red dot surrounded by 4
green or red dots. The surrounding locations are checked for
higher innovation residuals to keep (green) or reject (red)the
patch features. The estimated uncertainty of each landmark
location is shown by yellow ellipses. The largest patch feature
uncertainty of the first image has the patch feature in the
upper right part, where the image is very dark. We can
observe that almost all patch features are in green, which
indicates that grass patches can be tracked well.
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Figure 9. Comparison of Multi-GNSS/ wheel odometry/
IMU tightly coupled RTK positioning with and without

integrated visual odometry.

7. CONCLUSION

The autonomous driving of robots requires a precise and
reliable positioning. In this paper, we analyzed the tightly-
couled sensor fusion of GNSS-RTK, INS, odometry, Local
Positioning System (LPS) and visual positioning. The focus
was put on the LPS and visual positioning, and their integra-
tion into the sensor fusion. The paper provided a quantitative
performance analysis with real measurements, and showed
that centimeter-level positioning accuracy is feasible with
low-cost sensors.
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