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ABSTRACT

The key to high precision parameter estimation (e.g.,
positioning) in global navigation satellite system (GNSS)
applications is to take the integer nature of the carrier-
phase ambiguities into account. The class of integer esti-
mators, like integer bootstrapping (BS) or integer least-
squares (ILS), fixes the ambiguities to integer values, which
can also decrease the precision of the estimates of the non-
ambiguity parameters, if the probability of wrong fixing is
not sufficiently small. The best integer-equivariant (BIE)
estimator is optimal in the sense of minimizing the mean-
squared error (MSE) of both the integer and real valued
parameters, regardless of the precision of the float solution.
However, like ILS, the BIE estimator comprises a search in
the integer space of ambiguities, whose complexity grows
exponentially with the number of ambiguities, which is not
feasible for large-scale network solutions. To overcome this
problem, a sequential BIE (SBIE) algorithm is proposed,
which shows close to optimal performance while being part
of the class with complexity of linear order. Numerical si-
mulations are used to verify the performance of the SBIE
algorithm.

1 INTRODUCTION

The precision of conventional GNSS systems can be
considerably increased through the use of carrier-phase
measurements, which can be tracked with millimeter accu-
racy, but are ambiguous. In the past two decades, research
focussing on the estimation of these integer valued ambi-
guities was of great interest, reaching from the theoretical
concept of estimation [1] over ambiguity validation [2] to
highly reliable estimation schemes [3, 4]. As the reliabili-
ty of integer ambiguity estimation strongly depends on the
precise knowledge of error sources like atmospheric delays
or instrumental hardware biases, one usually uses double
difference measurements for differential positioning, which
strongly suppresses most of the error sources. However, the



availability of highly precise satellite clock and orbit cor-
rections enables the use of an absolute positioning strategy
with undifferenced measurements [5], referred to as preci-
se point positioning. Obviously, in such an absolute posi-
tioning scheme, the above mentioned error sources are all
present and have to be estimated in advance in order to ad-
just the GNSS measurements. For the joint estimation of
satellite biases or orbit corrections, a large-scale network
of reference stations with precisely known coordinates is
required.

There exists a great variety of integer ambiguity estima-
tors, reaching from a standard linear least-squares estimator
(which is called thefloat solution) to non-linear estimati-
on schemes like BS [6], integer aperture estimators [2, 7],
and the ILS estimator, which minimizes the squared norm
of the residuals of the linear GNSS model under the cons-
traint of the ambiguity estimates being integer valued. A
very efficient implementation of the latter scheme is gi-
ven by the famous Least-squares AMBiguity Decorrelation
Adjustment (LAMBDA) method [8]. Often, an integer va-
lued ambiguity estimate resulting from BS or ILS is called
fixed solution. A further, very promising estimator is the
BIE estimator [9], which results from a joint minimizati-
on of the MSE of both integer ambiguities and real valued
parameters over a more general class of estimators, which
includes both float and fixed solution, and also the class
of integer aperture estimators. However, just like ILS, the
BIE estimator comprises a search in the integer space of
ambiguities, which constitutes the major drawback of this
estimator and disqualifies its use for a joint network para-
meter estimation with a large number of ambiguities and,
therefore, for satellite bias estimation. In order to overcome
this complexity problem, a suboptimal estimation scheme
based on the BIE estimator can be used. In [10], a parti-
al BIE estimation scheme was proposed, which combines
BS, BIE and float solution, and uses each of them in the
respective regime, where it performs close to optimum. In
this paper, asequentialBIE estimation scheme is introdu-
ced, which shows very low complexity at the cost of only
slightly decreased performance.

Outline:The remainder of this paper is organized as fol-
lows. In Section 2, the principle of BIE estimation is re-
viewed before introducing the SBIE algorithm. A more de-
tailed description of the GNSS system model used for pa-
rameter estimation is given in Section 3, and finally some
numerical results based on this system model are presented
in Section 4.

2 GNSS PARAMETER ESTIMATION

In principle all GNSS problems (e.g., positioning or the
estimation of code- and phase-biases) that include carrier-
phase and, optionally, also code measurements or combi-
nations thereof, can be cast as a system of linear equations

in the form
Ψ = AN +Hξ + ηΨ , (1)

whereΨ ∈ R
q is the measurement vector, which contains

undifferenced measurements, single- or double-difference
combinations. The vectorsN ∈ Z

n andξ ∈ R
p denote the

unknown integer ambiguities and real valued parameters,
respectively, and the corresponding matricesA ∈ R

q×n

andH ∈ R
q×p represent the linear system model. Finally,

ηΨ ∈ R
q is an additive Gaussian noise with zero mean and

covariance matrixQη
Ψ
∈ R

q×q.

Best Integer-Equivariant Estimation

As the name indicates, the class of integer-equivariant
estimators is characterized by the integer remove-restore
property, i.e., if the measurements are perturbed by an ar-
bitrary number of cyclesAz, ∀z ∈ Z

n, the solution for the
ambiguity estimate is shifted byz. Likewise a perturbation
by Hζ, ∀ζ ∈ R

p, results in a shift of the real valued para-
meter vector byζ, while the integer part is not affected. It
can easily be shown, that all linear unbiased estimators ful-
fill this property [11], which makes the float estimator part
of this class. Furthermore, admissible integer estimators[1]
like BS or ILS are also part of this class by definition. Mi-
nimizing the MSE over the class of integer-equivariant esti-
mators thus leads to an estimator (the BIE estimator) with
at least equal performance compared to both the float and
fixed solution [12].

From the definiton of the MSE criterion in [9] it fol-
lows, that the BIE estimator not only minimizes the mean-
squared error in the Euclidean sense, but also in the metric
of anarbitrary covariance matrix. Hence, the BIE estima-
tes for ambiguities and real valued parameters are given by

[

ŇBIE

ξ̌BIE

]

= argmin
Ň ,ξ̌

E

[

∥

∥

∥

∥

[

Ň

ξ̌

]

−
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N

ξ

]∥

∥

∥

∥

2

Q−1

]

,

s.t. Q ∈ R
(n+p)×(n+p),Q � 0, (2)

where � is defined is the sense of positive semi-
defineteness, and the estimatesŇ and ξ̌ result from an
integer-equivariant estimator.

Although the BIE estimator can be derived for an arbitra-
ry noise contributionηΨ in (1) [11], we restrict ourselves to
Gaussian noise in this work. That being the case, the BIE
estimator follows the three-step procedure, which is well
known from integer (aperture) estimators [1, 2, 8]:

1. The integer property of the ambiguitiesN is discar-
ded, i.e., a standard linear weighted least-squares ad-
justment is performed, which leads to the unbiased,
Gaussian distributed float solutionŝN and ξ̂ with
the respective covariance matricesQ

N̂
∈ R

n×n and
Q

ξ̂
∈ R

p×p, and cross-covariance matrixQ
ξ̂,N̂

∈

R
p×n.



2. A mapping is introduced, that allocates to eachN̂ the
BIE ambiguity solutionŇBIE.

3. This ambiguity estimate is then used to adjust the float
solution of the real valued parametersξ in a least-
squares sense, i.e.,

ξ̌BIE = ξ̂BIE −Q
ξ̂N̂

Q−1

N̂

(

N̂ − ŇBIE

)

. (3)

The crucial point in the above procedure is the second
step, which is given by

ŇBIE =
∑

z∈Zn

zwz

(

N̂
)

with
∑

z∈Zn

wz

(

N̂
)

= 1, (4)

i.e., the BIE ambiguity solutionŇBIE is a weighted sum
of all vectors in then-dimensional space of integers. The
weighting coefficients in (4) are computed as
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Q
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) . (5)

Because of the infinite sums in (4) and (5), the compu-
tation of the true BIE ambiguity estimates is not feasible.
As a consequence, the sums are constrained to the setΘ

d

N̂
,

which contains all integer vectors within an ellipsoidal regi-
on around the float solution̂N with radiusd defined in the
metric of the covariance matrixQ

N̂
. This choice preserves

the integer-equivariance property of the estimator. The size
of the search space is set according to a probabilistic crite-
rion in [13], which is possible through exploiting the fact,
that ‖N̂ − N‖2

Q
−1

N̂

follows a centralχ2 distribution with

n degrees of freedom. Obviously, if the probability of̂N

lying within the volume ofΘd
N is fixed, the radiusd and,

therefore, the number of integer candidates gets smaller for
increasing precision of the float solution.

In order to enable an efficient search of the integer can-
didates withinΘd

N̂
, some methods from the LAMBDA al-

gorithm, namely the prior integer decorrelation and the tri-
angularization of the covariance matrixQ

N̂
, which allows

for a recursive tree-search formulation [8, 14], should be
adapted. For a low complexity implementation, which it is
aimed at in this contribution, the functional decorrelation
in [15] shall be mentioned as an alternative to the iterative
Z transformation of the LAMBDA method.

Sequential Best Integer-Equivariant Estimation

Although the integer decorrelation and tree-search refor-
mulation dramatically reduce the complexity of finding the
integer candidates within the search spaceΘ

d

N̂
, the com-

plexity of the search itself still grows exponentially with
the number of ambiguitiesn. Therefore, a suboptimal, but

from a computational point of view less demanding ap-
proach is now introduced, which combines the optimal BIE
estimator with a sequential processing strategy. Instead of
performingonen-dimensional search in the integer space
of ambiguities,n one-dimensionalsearches are performed,
i.e., a separate BIE estimation is done for each ambiguity.
Note, that only the second step of the three-step framework
is affected.

Like in the BS algorithm, the ambiguities are sequenti-
ally estimated, starting with the first ambiguity and condi-
tioning each ambiguity on the ones, that have already been
estimated. Thejth conditioned ambiguity is given by

N̂j|J = N̂j −

j−1
∑

l=1

σ
N̂jN̂l|L

σ−2

N̂l

(

N̂l|L − Ňl,SBIE

)

,

∀j ∈ {1, . . . , n} , (6)

whereσ
N̂jN̂l|L

denotes the covariance between̂Nj and

N̂l|L, σ2
N̂l

is the variance ofN̂l, and the setJ =

{1, . . . , j − 1} for j > 0 andJ = ∅ for j = 0 (L is defi-
ned accordingly). The variances and covariances are acces-
sible from theLDLT decomposition ofQ

N̂
[6], which is

already available from the integer decorrelation.
The final SBIE ambiguity estimates, also required for (6)

itself, are computed from (4) and (5), adjusted to the one-
dimensional case, from the conditional float ambiguity esti-
matesN̂l|L with varianceσ2

N̂l|L
for all l ∈ {1, . . . , n}, as

Ňl,SBIE =
∑

z∈Θd

N̂l|L

z wz

(

N̂l|L

)

. (7)

In contrast to the multivariate case, the search for the
integer candidates itself is a trivial task in one-dimensional
space, as one simply has to find all scalar integers within a
given interval

Θ
d

N̂l|L
= z ∈

[

N̂l|L − dσ
N̂l|L

, N̂l|L + dσ
N̂l|L

]

,

s.t. z ∈ Z. (8)

The normalized size of the search intervald does not de-
pend on the variance of the conditioned float solution and
– as already mentioned – can be derived from the probabi-
listic criterion

Pr







∣

∣

∣Nl − N̂l|L

∣

∣

∣

2

σ2
N̂l|L

≤ d2






= 1− ε (9)

for a fixed value ofε, as
∣

∣

∣Nl − N̂l|L

∣

∣

∣

2

/σ2
N̂l|L

follows a

centralχ2 distribution with one degree of freedom, if the
randomness of̌Nj,SBIE is neglected∀j ∈ L.

After the sequential estimation, the ambiguities are
stacked into a vector

ŇSBIE =
[

Ň1,SBIE, . . . , Ňn,SBIE

]T
, (10)



which is then used to adjust the float solution of the real
valued parameterŝξ according to the third step of the three-
step framework.

Obviously, this SBIE estimation allows for a complexity
reduction fromexponentialorder for the true BIE estima-
tor to linear order. Therefore, the complexity of SBIE is
comparable to the one of the BS algorithm, and, coming
along with that, also much lower than the one of ILS. The
loss of performance resulting from the suboptimality is to
be numerically evaluated in Section 4.

Note, that the resulting SBIE ambiguity estimates are
not unique, but depend on the ordering of the (decorre-
lated) ambiguities. In the simulations below, the order is
chosen such, that the precision of the float ambiguity esti-
mates ”decreases” with increasing index, i.e., in each step
the ambiguity with the float solution showing the smallest
conditional variance is chosen next.

Optimality of SBIE

Despite its general suboptimality, there exist three cases,
in which the SBIE estimator is equal to or converges to the
MSE optimal BIE solution.

1. The covariance matrixQ
N̂

is diagonal: In that ca-
se the SBIE algorithm can be shown to be equivalent
to the true BIE algorithm. As the single ambiguities
are uncorrelated, the sequential estimation of the am-
biguities gets aseparateestimation, which should be
intuitive to be optimal. This property represents a fur-
ther motivation for a prior integer decorrelation, which
diagonalizesQ

N̂
as far as possible.

2. The float solutionN̂ shows very low precision:The
integer grid is very dense compared to the probability
density of the float solution̂N . Therefore, in the limit
case, for each ambiguity there exists an integer larger
than the float solution corresponding to each integer
smaller than the float solution with the same distance
to N̂l|L, which average to the (conditioned) float so-
lution itself (see Figure 1), which is MSE optimal in
that regime [11].

3. The float solutionN̂ shows very high precision:The
probability density of the float solution̂N is very pea-
ked compared to the integer grid, which causes a SBIE
solution, that automatically converges to the BS solu-
tion, as the weighting coefficients in (7) approach bi-
nary values (see Figure 1). For vanishing probability
of wrong fixing, i.e., in the high precision regime, the
BS solution is also MSE optimal.

The optimality of SBIE for these three cases is proven
analytically in the Appendix.

Fig. 1 The weights of the integer candidates (dotted lines),
which are directly proportional to the value of the Gauss–
curve centered around the float solution, are illustrated for
low (left subfigure) and high (right subfigure) precision. We
can see, that for low precision there is always a pair of can-
didates with approximately the same weights averaging to
the float solution itself, while for high precision the weights
approach binary values.

3 SIMULATION SETUP

GNSS System Model

Assuming, that the hardware biases of the GNSS measu-
rements are not link dependent, but can rather be modeled
as a sum of satellite and receiver specific biases, the abso-
lute code-ρkr,m(t) and carrier-phaseλmϕk

r,m(t) measure-
ments at timet for satellitek and userr on frequencym
with wavelengthλm can be modeled as [3]

ρkr,m(t) = gkr,m(t) + q21mIkr (t) + br,m + bkm + ηkr,m(t)

λmϕk
r,m(t) = gkr,m(t)− q21mIkr (t) + βr,m + βk

m

+ λmNk
r,m + ǫkr,m(t). (11)

The ionospheric slant delay (phase advance) on the first
frequency is denoted byIkr (t) and used with scaling fac-
tor q1m = f1/fm for frequencym. The constant code-
and phase-biases on each frequency are given bybr,m, bkm,
βr,m andβk

m for receivers and satellites, respectively, and
the integer ambiguities for each link areNk

r,m. The addi-
tive noise contributionsηkr,m(t) andǫkr,m(t) for code- and
carrier-phase measurements are modeled as zero mean whi-
te Gaussian processes, i.e., a possible multipath effect is
already corrrected for [16].

The geometry termsgkr,m(t) can further be rewritten as

gkr,m(t) = ek,Tr (t)
(

xr(t)− xk
r (t)

)

+ c
(

δτr(t)− δτkr (t)
)

+M
(

Ek
r (t)

)

Tz,r(t), (12)

with ekr (t) ∈ R
3 being a unit vector pointing from satelli-

te k to receiverr, xr(t) ∈ R
3 the receiver position at the

time of receptiont, andxk
r (t) ∈ R

3 the satellite positi-
on at thetime of transmissionto receiverr. Furthermore,
the clock offsets of receiver and satellite are denoted by



δτr(t) andδτkr (t) at the time of reception and transmissi-
on, respectively, and the tropospheric delay is modeled as
the product of the zenith delayTz,r(t) at receiverr and the
mapping functionM

(

Ek
r (t)

)

depending on the elevation
angleEk

r (t) between satellitek and userr.
Further effects like phase-wind-up and phase-center va-

riations are assumed to be completely compensated for in
advance.

Parameter Mappings

A joint estimation of all hardware biases, ambiguities,
clock offsets and atmospheric errors is not feasible due to
the rank deficiency of the system of equations (11). There-
fore, the three-step parameter mapping strategy from [17] is
applied before the parameter estimation. Firstly, the code-
biasesbr,m andbkm are equivalently rewritten as a frequen-
cy dependent and a frequency independent component for
each receiver and satellite, where the former ones are trea-
ted as virtual additional ionospheric delays and the latter
ones as additional clock offsets.

In the second step, one of the satellites is chosen as a re-
ference satellite. The phase bias of that satellite is absorbed
in the receiver phase-biasesβr,m, and all satellite phase-
biasesβk

m are only estimated as the offset to the bias of
that reference satellite. The same strategy is applied to the
receiver and satellite clock errorsδτr(t) andδτkr (t).

As a last step, the linear dependencies between the re-
maining phase-biases and the integer ambiguitiesNk

r,m are
removed via a Gaussian elimination. Thereby, one set of
ambiguities is mapped to the phase-biases and becomes re-
al valued, while a second set of ambiguities is exclusively
mapped to other ambiguities, which preserves the integer
property.

After all parameter mappings the system model (11) can
be written in the form of (1), and the presented three-step
framework can be applied, either with BS, ILS, BIE or
SBIE.

Estimation Strategy

Besides the measurement model (11), the temporal evo-
lution of the parameters in the state vector can be modeled
as a Gauss-Markov process with white Gaussian process
noise. Apparently, for all constant parameters, like biases
and integer ambiguities, no noise is present. After a least-
squares initialization the MSE-optimal estimates can be
computed recursively with a Kalman filter, which minimi-
zes the MSE for the class of linear estimators. Based on the
Gaussian distributed estimates resulting from the update-
step of the Kalman filter, further, non-linear estimators like
SBIE can be applied, i.e., the outcome of the Kalman filter
serves as the float solution of the three-step framework of
Section 2. As the BIE (and also SBIE) estimates do not fol-
low a Gaussian distribution, a feedback-loop to the Kalman
filter cannot be set up to fasten the convergence.

The great advantage of using a Kalman filter for evalua-
ting the performance of the SBIE estimator compared to
other schemes is, that it offers a wide range of precision
characteristics of the float solution, starting with very low
precision and ending up at very high precision after suf-
ficient convergence. Thus, evaluating the performance of
the different estimators as a function of the epochs of the
Kalman filter also allows for an interpretation of the perfor-
mance depending on the precision of the float solution.

4 NUMERICAL RESULTS

For all simulations, pseudorange and carrier-phase mea-
surements on the two frequenciesf1 = 154 · 10.23MHz
andf2 = 120·10.23MHzare modeled, where the measure-
ment noise is chosen asσρ = 1m andσϕ = 2 cm, respec-
tively. The time interval between two subsequent epochs is
chosen as△t = 1 s.

Small Network MSE Evaluation

A small toy-example with onlyR = 2 reference stations,
each having a line of sight connection toK = 6 satellites
is considered. After the parameter mappings this results in
n = 10 ambiguities andp = 35 real valued parameters,
which also allows for applying the two search-based esti-
mators, namely BIE and ILS, due to the small number of
ambiguities. The performance of the different estimation
schemes is compared via the weighted MSE

MSE{F,BS,ILS,SBIE,BIE}(t) =

E

[

∥

∥

∥

∥

[

Ñ(t)

ξ̃(t)

]

−

[

N

ξ(t)

]∥

∥

∥

∥

2

Q
−1

F
(t)

]

with Ñ(t) ∈
{

N̂(t), Ň{BS,ILS,SBIE,BIE}(t)
}

,

and ξ̃(t) ∈
{

ξ̂(t), ξ̌{BS,ILS,SBIE,BIE}(t)
}

, (13)

whereQF(t) ∈ R
(n+p)×(n+p) is the covariance matrix of

the float solution at timet. By definition, the MSE of the
float solution is constant with the number of unknowns

MSEF(t) = n+ p. (14)

The MSE curves resulting from Monte-Carlo simulati-
ons with104 realizations are plotted against epochs in Fi-
gure 2. Due to the high probability of wrong fixing, the
performance of ILS and BS is worse compared to the float
solution in the first epochs, but will converge to the optimal
BIE solution with vanishing probability of wrong fixing
(not depicted here). The increase of the MSE in the first
epochs can be ascribed to the weighting with the inverse
covariance matrix with decreasing variances. By definition,
the BIE solution is optimal, though it appears to be worse
than the float solution at very low precision, which is cau-
sed by the sloppy approximation of the ambiguity estimate
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Fig. 2 MSE curves of float solution, BS, ILS, SBIE and
BIE estimates plotted agains epochst.

ŇBIE in that regime (not critical for higher precision, whe-
re a smaller number of candidates is required). As already
stated, the SBIE estimator shows (quasi-) optimal perfor-
mance for low and high precision. The only penalty appears
– as expected – in between these two cases, yet it is small
enough, that SBIE is still superior to ILS. Note, that appro-
ximating the SBIE ambiguity estimates in the first epochs
is much easier and, thus, can be done more precisely than
the approximation of the BIE ambiguity estimates.

Satellite Phase-Bias Estimation

A global network ofR = 20 reference stations is consi-
dered for satellite bias estimation, and the satellite constel-
lation is assumed to follow a Walker 27/3/1 constellation,
i.e., the Galileo setup. The elevation mask is set to5 deg,
and Niell’s model [18] is used for modeling tropospheric
slant delays. Compared to the previous toy-example, satel-
lite orbit errors and error rates are included in the parame-
ter vector, which are described in the RIC coordinate frame
(radial, in-track, and cross-track) [16], and follow Newton’s
laws of motion. For the simulated time span of30min, a to-
tal number of ambiguitiesn = 228 is reached, considering
only those satellites at each receiver, which are visible over
the whole period. Therefore, ILS and BIE are excluded in
the analysis, as their respective searches are too complex.

As the float solution as well as BS and SBIE are unbiased
estimators, their performance can be compared using the
mean (with respect to different satellites and frequencies)
standard deviation of the satellite phase-bias estimates

STD2
{F,BS,SBIE}(t) = Ek,m

[

(

β̃k
m(t)− βk

m

)2
]

with β̃k
m(t) ∈

{

β̂k
m(t), β̌k

m,{BS,SBIE}(t)
}

. (15)

One obvious result from Figure 3 is, that by somehow
taking into consideration the integer nature of the ambigui-
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Fig. 3 Mean standard deviations of the satellite phase-bias
estimates for float solution, BS, and SBIE plotted agains
epochst.

ties, the accuracy of the float bias estimates can be consi-
derably improved, if the precision of the float solution itself
is not too low. A great advantage of SBIE (and also BIE) is,
that one does not have to think about which ambiguities to
fix or when to fix a certain ambiguity, and setting up some
decision criterion, as SBIE automatically converges to the
respective best solution.

5 CONCLUSION

A novel GNSS parameter estimation scheme was propo-
sed, which combines the MSE-optimal BIE estimator with
the sequential estimation strategy known from BS. There-
by, the complexity was reduced from exponential to linear
order, as the computationally demanding search operation
was replaced by trivial, one-dimensional searches. In nu-
merical simulations the close to optimum performance of
SBIE was proven true. These properties not only provide
for an applicability in large-scale networks, but also for ap-
plications, which require low complexity, such as in smart-
phones, automobile or maritime devices for carrier-phase
based positioning.
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APPENDIX

Proof:SBIE is optimal forQ
N̂

diagonal: the exponential
function in the computation of the BIE ambiguity estimate



(5) can be split to

exp

(

−
1

2

∥

∥

∥N̂ − z
∥

∥

∥

2

Q
−1

N̂

)

=

n
∏

l=1

exp

(

−
1

2σ2
N̂l

(

N̂l − zl

)2
)

=

n
∏

l=1

el (zl) , (16)

which is a product of factorsel (zl) only depending on the
lth ambiguity. Hence, the BIE estimate for thejth ambigui-
ty according to (4), (5) and (16) is given by

Ňj,BIE =
∑

z∈Zn

zj

∏n

l=1 el (zl)
∑

z′∈Zn

∏n

l=1 el (z
′
l)

=
1

∑

z′∈Zn

∏n

l=1 el (z
′
l)
·

∑

z\zj∈Zn−1

n
∏

l=1
l 6=j

el (zl)
∑

zj∈Z

zjej (zj)

=
∑

zj∈Z

zj
ej (zj)

∑

z′
j
∈Z

ej
(

z′j
) , (17)

which corresponds to a separate estimation of all ambi-
guities with a one-dimensional BIE estimator, which is
again equal to the SBIE estimator for uncorrelated float
ambiguity estimates.

Proof: SBIE is optimal for very low precision of̂N : as
the integer grid gets very dense compared to the probability
density of the float solution, the summation in (7) can be
replaced by proper integration in the limit case (an infinite
search space is assumed)

Ňl,SBIE =

∫

R

z wz

(

N̂l|L

)

dz = N̂l|L, (18)

which is equal to the conditioned float solution̂Nl|L, as
∫

R
wz

(

N̂l|L

)

dz = 1 by definition andwz

(

N̂l|L

)

is sym-

metric with respect tôNl|L. Together with (6) follows

Ňl,SBIE = N̂l, ∀l ∈ {1, . . . , n} , (19)

which concludes the proof, as the float solution is optimal.

Proof: SBIE is optimal for very high precision of̂N :

according to (5), the weighting coefficientswz

(

N̂l|L

)

for

(7) are given by (again assuming an infinite search space)

wz

(

N̂l|L

)

=

exp

(

− 1
2σ2

N̂l|L

|z − N̂l|L|
2

)

∑

z′∈Z
exp

(

− 1
2σ2

N̂l|L

|z′ − N̂l|L|2
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1
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exp

(

− 1
2σ2
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(

|z′ − N̂l|L|2 − |z − N̂l|L|2
)

) .

(20)

Let the rounding operator be denoted by[·]. From (20) it
follows, that

lim
σ
N̂l|L

→0
w[N̂l|L]

(

N̂l|L

)

= 1, (21)

as
∣

∣

∣

[

N̂l|L

]

− N̂l|L

∣

∣

∣

2

≤ |z′ − N̂l|L|
2, ∀z′ ∈ Z \

[

N̂l|L

]

. As

a consequence of
∑

z∈Z
wz

(

N̂l|L

)

= 1,

lim
σ
N̂l|L

→0
wz

(

N̂l|L

)

= 0, ∀z ∈ Z \
[

N̂l|L

]

. (22)

Inserting (21) and (22) in (7) proves the equivalence of
SBIE and conditional rounding (i.e., BS) for the high pre-
cision regime, which is optimal there.
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