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Abstract – In this paper, a maximum a posteriori probability esti-
mator is derived for determining the relative position and carrier
phase integer ambiguities with GPS carrier phase measurements. The
estimator is also applied to real measurements and enabled aheading
determination with an accuracy of0.5◦/ baseline length [m].
Keywords – Carrier phase positioning, Integer Ambiguity Resolution,
MAP Estimation, Heading determination.

I. I NTRODUCTION

The carrier phase of GPS/ Galileo satellite signals can be
tracked with millimeter accuracy but is periodic which results
in an integer ambiguity for each satellite. In this paper, we
focus on attitude determination and, therefore, consider only
double difference (DD) measurements between two receivers.
The DD eliminates the receiver/ satellite clock offsets, biases
and also the atmospheric delays. The DD phase measurements
for the satellite pair{k, l} are modeled at timet as in [1] as

λ/2π ·
(

(ϕkl
1 (t+ δτ1))− (ϕkl

2 (t+ δτ2))
)

≈ (~e kl(t+ δτ2))
T~b12(t+ δτ2)

+ ckl12(t, δτ1, δτ2) + λNkl
12 + εkl12(t+ δτ1, t+ δτ2), (1)

with the wavelengthλ, the receiver clock offsetδτr, the unit
vector~e k pointing from thek-th satellite to the receivers, the
baseline vector~b12 between both receivers, the DD correction
ckl12, the integer ambiguityNk

r and the phase noiseεkr . The
double indices{kl} and {12} indicate differencing between
two satellites/ receivers.

The correction in Eq. (1) is required for low-cost GPS
receivers where the oscillators show clock offsets in the order
of milliseconds: The satellite movement within the time of the
differential receiver clock offset is no longer negligible. The
correction was derived by Henkel et al. in [1] to maintain the
integer property of ambiguities. It is given by
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with ∆τkr being the signal propagation time from the satellite
to the receiver. The corrected DD phase measurements can
then be modeled in matrix-vector notation as

Ψ̃ = Hξ +AN + η, (3)

where all variables are implicity defined by Eq. (1). The
measurement model of Eq. (3) is quite general and also allows
a stacking of code measurements inΨ̃. It is also common
practice to include measurements from multiple epochs.

Teunissen has developed in [2] the LAMBDA method to
solve the integer least-squares problem for GPS. In [3], he
proposed a constrained LAMBDA method which takes a
priori information on the baseline length into account. Multi-
frequency linear combinations are also an attractive meansto
eliminate the ionospheric delay and to increase the wavelength
and, thereby, to improve the reliability of integer ambiguity
resolution as described by the author in [4]- [6].

II. MAP ESTIMATION OF BASELINE AND INTEGER

AMBIGUITIES

A. Initial ambiguity fixing by Tree search

The Maximum Likelihood (ML) estimator determines the
baseline and ambiguity parameters{ξ,N} that have generated
the measurements̃Ψ with largest probability, i.e.

max
ξ,N

P (Ψ̃|ξ,N). (4)

The Maximum A Posteriori Probability (MAP) estimator is
the complement to the ML estimator and maximizes the
probabilityP (ξ,N |Ψ̃) of the baseline and ambiguity param-
eters for a given set of measurements. The MAP estimator
can be related to the ML estimator with the rule of Bayes
P (Ψ̃|ξ,N)P (ξ,N) = P (ξ,N |Ψ̃)P (Ψ̃), i.e. it is given by

max
ξ,N

P (ξ,N |Ψ̃) = max
ξ,N

P (Ψ̃|ξ,N)P (ξ,N)

P (Ψ̃)
, (5)

whereP (ξ,N) denotes the a priori information onξ andN ,
andP (Ψ̃) is considered as a marginal distribution. Assuming
that the distribution of the measurement noiseP (Ψ̃|ξ,N) is
Gaussian and that the a priori information is statisticallyinde-
pendent and also Gaussian distributed asP (ξ,N) ∼ N (ξ̄,Σξ̄),
the maximization can also be written as a minimization, i.e.

min
ξ,N

(

‖Ψ̃−Hξ −AN‖2
Σ

−1
Ψ

+ ‖ξ − ξ̄‖2
Σ

−1

ξ̄

)

. (6)

The minimization over the integer-valuedN requires a search.
Assuming a search space volumeχ2, the search determines all
integer candidate vectors insideχ2, i.e.

min
ξ

(

‖Ψ̃−Hξ −AN‖2
Σ

−1
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+ ‖ξ − ξ̄‖2
Σ

−1

ξ̄

)

≤ χ2. (7)



Teunissen decomposed the first term of Eq. (7) into three
orthogonal terms in [2], i.e.
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Σ
−1
Ψ

, (8)

whereP⊥
H is the orthogonal projector on the space ofH and

Ā = P⊥
HA. The last term of Eq. (8) denotes the irreducible

noise. The unconstrained least-squares float ambiguity esti-
mate N̂ and the unconstrained least-squares fixed baseline
estimateξ̌(N) are given by

N̂ = (ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ P⊥
H Ψ̃

ξ̌(N) = (HTΣ−1
Ψ H)−1HTΣ−1

Ψ (Ψ̃−AN). (9)

A sequential tree search shall now be performed for finding
all relevant integer candidates. As the search tree is developed
sequentially, the ambiguities are subdivided into a set of
integer valued and a set of real-valued ambiguities. The real-
valued set is attached to the baseline coordinates, i.e.
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(10)
The elements of the two subsets also depend on the path in
the search tree, which has been omitted to keep the notation
simple. The error decomposition of Eq. (8) is now applied to
the partially fixed solution, i.e.
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The float ambiguities of the first term are in general correlated.
These float ambiguities shall be related to the conditional
ambiguities, which are uncorrelated and were derived by
Teunissen in [2] as

N̂k|1,...,k−1 (12)

= N̂k −
k−1
∑

j=1

σ
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where the covarianceσ
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and varianceσ2
ˆ̃
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were derived by Teunissen in [2]. Eq. (12) enables us to rewrite
the first component of Eq. (11) as
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Let S = (13×3, 03×K−1−k) select the baseline coordinates
from the joint baseline/ ambiguity vector̃ξ. Combining Eq.

(11), (13) and (7) then gives
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The minimization of Eq. (14) provides the constrained partially
fixed float solution given by

ˇ̃ξopt(Ñ) =
(

Σ−1

ξ̃
+ STΣ−1

ξ̄
S
)−1 (

Σ−1

ξ̃

ˇ̃ξ(Ñ) + STΣ−1

ξ̄
ξ̄
)

.

(15)
Solving the quadratic inequality of Eq. (14) forNk yields a
lower and an upper bound for thek-th ambiguityNk:

l
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= N̂k|1,...,k−1 − σ
N̂k|1,...,k−1

√
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u
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√
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with
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(17)

The two terms in the second row of Eq. (17) describe the
baseline measurement residuals and the baseline a priori
residuals. The proposed estimate of Eq. (15) minimizes the
sum of both weighted sum of squared errors (WSSE) and,
thereby, finds the optimum trade-off between low baseline
measurement residuals and low baseline a priori residuals.For
the unconstrained integer search, the second term of the second
row of Eq. (17) is not considered and̃̌ξopt(Ñ) = ˇ̃ξ(Ñ) so that
also the first term of the second row vanishes. The length of
the search interval forNk is obtained from Eq. (16) as

u
N̂k

− l
N̂k

= 2σ
N̂k|1,...,k−1

√

Ak(Ñ). (18)

The substantial advantage of the soft-constrained integer
search tree becomes obvious now: The subtraction of the
last two terms fromχ2 in Eq. (17) substantially reduces the
search space volume compared to the unconstrained integer
search tree, and this dramatically improves the efficiency of
the search.

The tree search is performed as follows: First, the search
space volume is determined based on the unconstrained boot-
strapping solution of Eq. (12) as

χ2 = ‖Ψ̃−HξBS −ANBS‖
2

Σ
−1
Ψ

+ ‖ξBS − ξ̄‖2
Σ

−1

ξ̄

. (19)

Subsequently, the constrained float solution is determined
according to Eq. (15) and used to findA1, l

N̂1
and u

N̂1

with Eq. (16) and (17). This defines the search interval for



the integer-valuedN1. For each of the integer candidates, a
conditional partially fixed least-squares estimateˇ̃ξopt(Ñ) of
the baseline coordinates and remaining ambiguities is deter-
mined using Eq. (15), wherẽN denotes an integer candidate
of the first ambiguity. Moreover, a conditional unconstrained
float estimateN̂2|1 of the second ambiguity is computed based
on Eq. (12). This enables us to determineA2(Ñ), l

N̂2
and

u
N̂2

, which provides search intervals for the second ambiguity
conditioned on the candidates of the first ambiguity. A search
tree evolves and is further developed until all candidates of
theK-th ambiguity have been computed. Note that a branch
in the search tree does not have to be further considered if
Ak(Ñ) < 0 as the search interval diminishes.

Once the search tree is completed, one selects the path
whose respective ambiguities minimize the weighted sum of
squared errors‖Ψ̃−Hξ−AN‖2

Σ
−1
Ψ

+‖ξ− ξ̄‖2
Σ

−1

ξ̄

. The obtained

baseline/ ambiguities estimates represent then the solution of
the MAP estimator.

B. Attitude determination and Coasting

The heading (yaw) angle is obtained from the MAP baseline
estimateˇ̃ξopt(Ñ) as:

ψ = atan
(

ˇ̃ξopt,E(Ñ)/ ˇ̃ξopt,N(Ñ)
)

, (20)

and is counted clockwise with0◦ in Northern direction. The
elevation (pitch) angle is given by

θ = atan

(

ˇ̃ξopt,U(Ñ)/

√

ˇ̃ξ2opt,E(Ñ) + ˇ̃ξ2opt,N(Ñ)

)

. (21)

Once the ambiguities are fixed, the constrained baseline solu-
tion can be easily coasted using Eq. (15) andˇ̃

ξ(Ñ ) = ξ̌(Ñ)
from Eq. (9).

C. Cycle Slip Detection and Correction

In the coasting phase, carrier phase measurements have to be
carefully screened for cycle slips. As triple difference phase
measurements do not enable a reliable cycle slip detection
and correction during high receiver dynamics, the proposed
MAP estimator shall also be used for cycle slip detection and
correction. The MAP cycle slip correction follows as

min
∆N

‖Ψ̃−Hξ̌MAP−A(ŇMAP+∆N)‖2
Σ

−1
Ψ

+‖ξ̌MAP− ξ̄‖
2

Σ
−1

ξ̄

,

(22)
whereŇMAP and ξ̌MAP are the MAP estimates of the initial
ambiguity resolution and∆N denotes the cycle slip correction
for the current measurements̃Ψ. Relevant candidates for∆N
can be efficiently derived by predicting the triple difference
carrier phases and comparing the predicted phases to the actual
measured ones.

III. M EASUREMENT ANALYSIS

The proposed MAP estimator of baseline coordinates and
integer ambiguities was verified in a test drive, where two
low-cost single frequency patch antennas were mounted on the
roof of a car. Both antennas were aligned to the longitudinal

axis of the car and had a negligible height difference. The
baseline length was determined by a meter as1.415± 0.005
m. Fig. 1 shows the track of the first test drive at Nymphenburg
palace. The integer ambiguities were resolved in the beginning
while the car was not moving. Thus, the orientation of the car
was found without any movement. The subsequent track is
subdivided into sections of20 s.
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Fig. 1. Track of car drive at Nymphenburg palace. The integerambiguities
are resolved in the beginning while the car is not moving. Thesubsequent
track is subdivided into sections of20 s.

Fig. 2 shows the course of the heading during the test drive
at Nymphenburg palace. The enlarged regions show that the
noise of the heading estimate is in the order of only0.1◦.
The abrupt heading changes at70 s, 110 s and140 s indicate
u-turns or turns from one road into another road.
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Fig. 2. Heading of track at Nymphenburg palace: The noise of the heading
estimate is in the order of only0.1◦.

Fig. 3 shows the phase residuals of our MAP estimator for
the track of Fig. 1. The phase residuals of the two satellites
of highest elevation (PRN 29, 30) are only a few millimeters.
The phase residuals of the other satellites are more affected
by multipath but still remain unbiased and drift-free.
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Fig. 3. Phase residuals of fixed baseline solution for track at Nymphenburg:
The phase residuals of all satellites are far below one wavelength. For the two
satellites of highest elevation, the residuals are only a few millimeters.

Fig. 4 shows the track of our second test drive in front of
the ESA/ AZO building in Oberpfaffenhofen, Germany. The
integer ambiguities were again resolved in the beginning while
the car was standing. The track includes several turns and
three sections with reversing at97 − 104 s, 140− 160 s and
180 − 185 s. As the track was close to a high building, the
code measurements were affected by substantial multipath.

Fig. 4. Track of car drive in front of the ESA/ AZO building in Oberpfaf-
fenhofen. The track includes three reverse drives at97 − 104 s, 140 − 160

s and180− 185 s

Fig. 5 shows the double difference phase residuals of the
fixed MAP solution during the initial160 s. The car was
standing. The phase residuals of all4 double differences
are less than two centimeters over the complete period. This
indicates a correct integer ambiguity resolution.

Fig. 6 shows the course of the heading as obtained by our
MAP estimator. The estimated heading is varying only by a
few degrees during the drive from one end to the other end
of the road between5 s and35 s. The figure also shows three
reversing sections in good agreement with Fig. 4.
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Fig. 5. Phase residuals during initial nteger ambiguity resolution.
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Fig. 6. Heading of car during car drive in front of the ESA/ AZObuilding.

IV. CONCLUSION

A maximum a posteriori probability estimator has been
derived for relative carrier phase positioning, which fully
integrates the baseline a priori information into the tree search.
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