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Abstract

Global Navigation Satellite Systems (GNSS) have revolutionized many aspects of science and
every day life and allowed to realize applications which were unfeasible a few years ago. However,
the accuracy of the positioning with GNSS is limited by uncertainties in the satellite code and
phase biases, and code and phase multipath. The European GNSS Galileo offers dedicated signals
to overcome the multipath shortcoming. Exploiting its full capability will improve the reliability
of integer ambiguity resolution and provide the increased GNSS positioning accuracies. It will be
demonstrated in this thesis by analyzing the reliability of widelane integer ambiguity resolution
with Galileo in a static short-baseline relative positioning, as well as investigating the stability of
the float ambiguity estimates in Real-Time Kinematic (RTK) positioning with 25 km kinematic
baseline. In addition, the GPS and Galileo fixed phase residuals of Precise Point Positioning (PPP)
for a kinematic receiver are compared. Moreover, a new method for the joint subset optimization
and integer least-squares estimation of carrier phase cycle slips with the improved integer search
is developed.

Nowadays, using the differential GPS techniques that employ a network of reference receivers,
sub-meter or even centimeter-level positioning accuracy can be reached. When the network is not
dense enough for the accuracy desired, the method of Virtual Reference Station (VRS) is used.
In currently existing networks high-cost receivers are used, which poses a great obstacle in ob-
taining higher accuracies for civilian purposes and survey grade applications at affordable prices.
This thesis will focus on enhancing the precision and reliability of GNSS based absolute user
receiver position estimation using a network of low-cost GNSS receivers. A Virtual Reference
Station method is developed for the particularities of such receivers. We also propose a PPP so-
lution, which determines the absolute receiver position, ionospheric slant delays, ambiguities and
biases from single frequency satellite-satellite single-difference measurements. As the estimation
problem is ill-conditioned, we additionally include ionospheric a priori information to improve the
conditioning and convergence of the estimates. The a priori information is a Gaussian distribution
and consists of a mean value (Klobuchar, EGNOS) and a variance. The GNSS measurements and
ionospheric a priori information are combined in a Maximum A Posteriori (MAP) estimation of
the PPP solution. Thereby, we find an optimum trade-off between minimizing the measurement
residuals and minimizing the ionospheric residuals.
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1. Introduction 1

1. Introduction

1.1 Motivation and problem statement

The European GNSS Galileo offers signals with larger signal bandwidths than GPS and special
modulation schemes to overcome the multipath, which is a main limiting factor for positioning
accuracy in the urban environments. For example, the Alternate BOC (AltBOC) modulated E5
signal has a bandwidth of more than 50 MHz [1]. The impact of multipath on this signal is the
lowest ever observed compared to all other available GNSS signals. In addition, it features a code
tracking error five times lower than the BPSK(10) modulated GPS L5 signal [2]. The new signals
and additional frequencies will improve the reliability of integer ambiguity resolution and provide
higher positioning accuracies. With currently 4 Galileo satellites available, the estimation of the
Galileo system capability is possible.

Nowadays, reliable and precise absolute positioning is possible with high-cost geodetic GNSS
receivers, while low-cost systems mainly demonstrate a moderate absolute positioning perfor-
mance. The carrier smoothing technique is a popular approach to reduce the code noise and mul-
tipath using low noise phase measurements without the need of an integer ambiguity resolution.
Differential GPS techniques, that use a reference station with known coordinates to provide the
sum of errors in the form of correction at the user receiver, allow to mitigate the atmospheric and
orbital errors. The use of a regional network of reference stations instead of a single station allows
modeling of the systematic errors. Though dense enough for good Differential GPS (DGPS), some
national networks cannot provide density sufficient for precise RTK, especially in the periods of
high atmospheric disturbance. The method of Virtual Reference Station (VRS) allows perform-
ing RTK positioning in reference station networks with distances as long as 40 km to the next
reference station while providing the performance of short baseline positioning [3]. However, the
method employs high-cost geodetic receivers. The motivation for this master’s thesis is to develop
the Virtual Reference Station concept for the network of low-cost receivers.

1.2 Methodology

Most of the algorithms for this master thesis were programmed in MATLAB and tested in vari-
ous measurement campaigns. GPS and Galileo measurements for precise positioning with Galileo
were collected using two geodetic NovAtel OEM628™ triple-frequency L-band GNSS receivers,
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as well as Javad GrAnt and Novatel GPS-703-GGG triple-frequency Pinwheel™ high performance
GNSS antennas. GPS measurements for precise absolute positioning with low-cost receivers were
collected with two u-blox LEA 6T receivers as well as compact patch antennas from u-blox and
Trimble. Some of the algorithms have been recently integrated into the Position and Attitude De-
termination (PAD) system of Advanced Navigation Solutions (ANAVS) GmbH.

The second chapter of the thesis provides the fundamentals necessary to proceed to precise
positioning with geodetic and low-cost GNSS receivers, such as code and phase measurements
models, as well as single-frequency and multi-frequency code and phase combinations used.

The third chapter of this thesis shows the results of the precise absolute and relative positioning
with Galileo. The positioning algorithms applied to the measurements collected within the two
different test campaigns are described. In addition, the benefits of Galileo system as well as its
signal innovations are described. Finally, a new method for joint subset optimization and integer
least-squares estimation in case of cycle slips is proposed.

The fourth chapter introduces a Virtual Reference Station (VRS) method and describes its
adaptation for a system of low-cost single-frequency GNSS receivers. The method for precise ab-
solute positioning of the reference station is described, which includes the estimation of position,
ambiguities and soft-constrained residual combined ionospheric delays. Moreover, the interpola-
tion method for the sum of errors derived from the raw single-difference code and phase mea-
surements of reference stations is suggested. Final positioning accuracy on a decimeter level is
expected.

The fifth chapter summarizes all the main concepts and results presented in the thesis, as well
as provides the suggestions for the further development of these concepts.
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2. Fundamentals

2.1 Code and phase measurement models

Absolute position determination with any GNSS is based on estimating signal propagation times
from satellites to receivers. They are measured relative to a receiver generated code replica during
the code tracking process [4]. The corresponding pseudoranges, which are equal to true ranges plus
errors, are determined by multiplication of propagation times by the speed of light. Pseudoranges
are modeled as measured at the receiver r from satellite k on any frequency m as described by
Henkel [5]:

ρkr,m(tn) = ‖~xr(tn) +∆~xET,r(tn)− ~xk(tn −∆tn)−∆~xk(tn)‖+ c(δτr(tn)− δτ k(tn −∆tn))

+mT(θkr (tn))Tz,r(tn) + q2
1mI

k
1,r(tn) + br,m + bkm

+∆ρkMP,r,m(tn) + ηkr,m(tn) (2.1)

with the time of signal reception tn, the signal travel time ∆tn, the receiver position ~xr, the
receiver position error due to the solid Earth tides ∆~xET,r, the satellite position ~xk, the satellite
position error ∆xk, the speed of light c in vacuum, the receiver clock offset δτr, the satellite clock
offset δτ k, the tropospheric zenith delay Tz,r equal for all satellites, its corresponding mapping
function mT(θkr ) as a function of satellite elevation angle θkr , the ionospheric slant delay Ik1,r of the
first order on frequency f1, the ratio of carrier frequencies q2

1m =
f2
1

f2
m

, the receiver code bias br,m,
the satellite code bias bkm, the code multipath error ∆ρkMP,r,m and the receiver code noise ηkr,m. The
first term denotes the true range rkr between satellite and receiver.

The tides generated by the Sun and Moon deform the shape of the Earth, causing so-called
solid Earth tides. The tidal deformation can be divided into two parts: a periodic and a permanent
(time-independent) part. The permanent tide is a function of observer’s latitude only. The periodic
radial and horizontal site displacements caused by tides of spherical harmonic degree and order
(n, m) are characterized by the Love number hnm and the Shida number lnm that reflect the non-
rigidity of the Earth. The effective values of these numbers weakly depend on receiver latitude and
tidal frequency and need to be taken into account when a positioning accuracy of 1 mm is desired.
However, only second degree tide and height correction terms are necessary for 5 mm precision
[6].
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Apart from code tracking, every GNSS receiver provides the second measurement type,
achieved by carrier phase tracking. The received carrier phase is measured relative to the phase
of a reference sinusoidal signal generated by the receiver clock. Using these measurements, a sub-
stantially higher positioning accuracy can be achieved. However, carrier phase is periodic, which
results in the initial integer phase ambiguity not measured by the receiver. In order to benefit from
the low noise level of the carrier phase measurements, these ambiguities has to be resolved. Carrier
phase can be modeled similarly to pseudorange, i.e.[5]:

λmϕ
k
r,m(tn) = ‖~xr(tn) +∆~xET,r(tn)− ~xk(tn −∆tn)−∆~xk(tn)‖+ c(δτr(tn)− δτ k(tn −∆tn))

+mT(θkr (tn))Tz,r(tn)− q2
1mI

k
1,r(tn) + λmN

k
u,m +∆ϕkPW,r(tn) +∆ϕkPCO,r

+∆ϕkPCV,r(tn) + βr,m + βkm +∆ϕkMP,r,m(tn) + εkr,m(tn) (2.2)

with the wavelength of the m-th carrier signal λm, the carrier phase integer ambiguity Nk
r,m, the

phase wind-up error ∆ϕkPW,r, the receiver antenna phase center offset error ∆ϕkPCO,r, the receiver
antenna phase center variation error ∆ϕkPCV,r, the receiver phase bias βr,m, the satellite phase
bias βkm and the phase noise εkr,m as additional terms. The ionospheric slant delay Ik1,r has to be
subtracted from the true range instead of being added as for pseudorange.

2.2 Single-frequency linear combinations of code and phase measure-
ments

Linear combinations of measurements are widely used in absolute and relative positioning to im-
prove the reliability of integer ambiguity resolution, as they allow to reduce or eliminate range
error terms. The simplest linear combinations are single-frequency linear combinations such as
between-receiver and between-satellite differences of code and phase measurements.

The between-satellite single-difference (SD) code measurements on the frequency m are
formed by taking a difference of the measurements of (2.1) at the receiver r from the reference
satellite k, which is typically the satellite with highest elevation, and any other satellite l at the
same epoch [4]:

ρk,lr,m = ρkr,m − ρlr,m (2.3)

= (rkr − rlr)− c(δτ k − δτ l) + (mT(θkr )−mT(θlr))Tz,r + q2
1m(Ik1,r − I l1,r)

+(bkm − blm) + (ηkr,m − ηlr,m) (2.4)

where code biases include the error due to solid Earth tides and code noise includes multi-
path.
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Single-difference carrier phase measurements are given by [4]:

λmϕ
k,l
r,m = λm(ϕkr,m − ϕlr,m) (2.5)

= (rkr − rlr)− c(δτ k − δτ l) + (mT(θkr )−mT(θlr))Tz,r − q2
1m(Ik1,r − Ik1,r)

+λm(Nk
r,m −N l

r,m) + (βkm − βlm) + (εkr,m − εlr,m) (2.6)

where satellite phase biases include the errors due to solid Earth tides, as well as phase wind-
up, antenna phase center offset and variation errors, and phase noise includes multipath. Under
assumption that the measurements are taken at the same epoch, receiver clock offsets as well as
receiver biases are eliminated by taking single difference of the measurements. On the other hand,
the noise of single-difference measurements is increased by a factor of

√
2 with respect to the noise

of individual measurements [7]. In the similar manner between-receiver single-difference code and
phase measurements can be formed from the measurements of two receivers and any satellite in
order to eliminate satellite clock offsets and biases.

We simplify the notation by writing between satellite single-difference measurements as (·)kl,
i.e.

ρklr,m = rklr − cδτ kl + q2
1mI

kl
1,r + T klr + bklm + ηklr,m (2.7)

λmϕ
kl
r,m = rklr − cδτ kl − q2

1mI
kl
1,r + T klr + λmN

kl
r,m + βklr,m + εklr,m (2.8)

In order to eliminate further errors common to two receivers, double-difference (DD) measure-
ments from reference satellite k and any other satellite l at the user receiver u and a reference
receiver r can be computed from Eq. (2.7) and Eq. (2.8) as follows [4]:

ρklur,m = ρklu,m − ρklr,m (2.9)

= rklur + q2
1mI

kl
1,ur + T klur + ηklur,m (2.10)

λmϕ
kl
ur,m = λm(ϕklu,m − ϕklr,m) (2.11)

= rklur − q2
1mI

kl
1,ur + T klur + λmN

kl
ur,m + εklur,m (2.12)

Formation of double-difference phase measurements simplifies integer ambiguity resolution, as
receiver and satellite phase biases are canceled out and atmospheric errors are reduced. On the
other hand, the noise of double-difference measurements is increased by a factor of 2 with respect
to the noise of individual measurements [7].
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2.3 Multi-frequency linear combinations of code and phase
measurements

Multi-frequency linear combinations are formed from the individual, as well as single-difference
and double-difference code and phase measurements on several frequencies taken at the same
epoch. They allow to scale or eliminate certain pseudorange constituents, simplify integer ambi-
guity resolution by increasing the wavelength or reduce the noise of unambiguous code measure-
ments.

We simplify the observation equations (2.1) and (2.2) by denoting all non-dispersive terms as
ρ′:

ρ′ = rkr − c(δτr − δτ k) + T kr (2.13)

and the sum of satellite and receiver biases is denoted as one term. Code measurements ρkr and
carrier phase measurements ϕkr at the receiver r from any satellite k are linearly combined using
coefficients α1 and α2 to create code-only and phase-only linear combinations.

The dispersive behavior of ionospheric delay proportional to the inverse of the square of carrier
frequency 1

f2
m

enables its elimination (to the first order) by ionosphere-free (IF) linear combina-
tions. Assuming that the measurements at receiver r from any satellite k on two frequencies f1 and
f2 are given, the combination can be formed using the following coefficients α1 and α2 [5]:

α1 =
f 2

1

f 2
1 − f 2

2

α2 = − f 2
2

f 2
1 − f 2

2

(2.14)

They are obtained from geometry preserving (α1+α2=1) and ionosphere free (α1+q2
12α2=0) con-

straints. For the code measurements of Eq. (2.1) ionosphere-free combination is given by:

ρkr,IF = α1ρ
k
r,1 + α2ρ

k
r,2 (2.15)

= (α1 + α2)ρ′ + α1b
k
r,1 + α2b

k
r,2 + α1η

k
r,1 + α2η

k
r,2

= ρ′ + α1b
k
r,1 + α2b

k
r,2 + α1η

k
r,1 + α2η

k
r,2 (2.16)

For the phase measurements of Eq. (2.2) we obtain:

λϕkr,IF = α1λ1ϕ
k
r,1 + α2λ2ϕ

k
r,2 (2.17)

= ρ′ + α1(
c

f1

Nk
1 + εkr,1) + α2(

c

f2

Nk
2 + εkr,2) + α1β

k
r,1 + α2β

k
r,2

= ρ′ +
c

f 2
1 − f 2

2

(f1N
k
r,1 − f2N

k
r,2) + α1β

k
r,1 + α2β

k
r,2 + α1ε

k
r,1 + α2ε

k
r,2 (2.18)

The combination contains geometry, clock offsets, tropospheric delay, receiver and satellite biases,
as well as ambiguities for phase. The noise of linear combination is amplified with respect to the
noise of individual measurements.
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The widelane (WL) linear combinations are particularly suitable for integer ambiguity resolu-
tion and search for small cycle slips, as it creates a signal with significantly longer wavelength as
follows [4]:

λWLϕ
k
r =

f1

f1 − f2

λ1ϕ
k
r,1 −

f2

f1 − f2

λ2ϕ
k
r,2 (2.19)

= ρ′ +
f1

f2

Ik1,r +
c

f1 − f2

(Nk
r,1 −Nk

r,2) +
f1β

k
r,1 − f2β

k
r,2

f1 − f2

+
f1ε

k
r,1 − f2ε

k
r,2

f1 − f2

(2.20)

The large wavelength λWL = c/(f1 − f2) reduces uncertainty in integer ambiguity resolution, but
only in case the noise amplification of individual measurements is less than the increase of the
wavelength.

The narrowlane (NL) linear combinations allow to reduce the phase measurement noise and
are given by:

ϕkr,NL =
f1

f1 + f2

ϕkr,1 +
f2

f1 + f2

ϕkr,2 (2.21)

= ρ′ − f1

f2

Ik1,r +
f1N

k
r,1 + f2N

k
r,2

f1 + f2

+
f1β

k
r,1 + f2β

k
r,2

f1 + f2

+
f1ε

k
r,1 + f2ε

k
r,2

f1 + f2

(2.22)

Both widelane and narrowlane combinations contain geometry, ionospheric and tropospheric de-
lays, clock offsets, receiver and satellite biases, as well as ambiguities for phase.

Except for code-only and phase-only combinations, code-carrier linear combinations can be
formed. The dual-frequency Melbourne-Wübbena linear combination, formed as the difference
between the dual-frequency carrier phase widelane combination and dual-frequency code combi-
nation with coefficients according to the narrowlane (+1,+1) combination, is given by ([5], [8] and
[9]):

λWLϕ
k
r,MW =

(
f1

f1 − f2

λ1ϕ
k
r,1 −

f2

f1 − f2

λ2ϕ
k
r,2

)
−
(

f1

f1 + f2

ρkr,1 +
f2

f1 + f2

ρkr,2

)
(2.23)

=
c

f1 − f2

(Nk
r,1 −Nk

r,2) +
f1ε

k
r,1 − f2ε

k
r,2

f1 − f2

−
f1η

k
r,1 + f2η

k
r,2

f1 + f2

(2.24)

It posses the large wavelength of widelane combination and eliminates non-dispersive part of the
geometry and dispersive ionospheric delay. The widelane ambiguities, as well as satellite and
receiver biases remain. The trade-off is the large noise that is given by the code measurements
noise.

Henkel and Günther derived in [10] a group of multi-frequency code-carrier linear combina-
tions which allow an arbitrary scaling of the geometry, an arbitrary scaling of the ionospheric delay
and any preferred wavelength. The noise level of the combinations is of a few centimeters. Code ρkr
and carrier phase ϕkr measurements at the user receiver r from any satellite k on multiple frequen-
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cies M are linearly combined with the phase weight αm and the code weight γm as follows:

M∑
m=0

(αmλmϕ
k
r,m + γmρ

k
r,m) =

(
M∑
m=0

(αm + γm)

)
ρ′

−

(
M∑
m=0

(αm − γm)q2
1m

)
I ′k1,r −

(
M∑
m=0

(
1

2
αm − γm)q3

1m

)
I ′′k1,r

+

(
M∑
m=0

(αmλmN
k
r,m)

)
+

(
M∑
m=0

(αm(βr,m + βkm) + γm(br,m + bkm))

)

+

(
M∑
m=0

(αmε
k
r,m + γmη

k
r,m)

)
(2.25)

where the ionospheric delay on the first frequency Ik1,r is presented as ionospheric delay I ′k1,r of the
first order and ionospheric delay I ′′k1,r of the second order. The choice of the weights is determined
by the level of constraints on each term on the right side of Eq. (2.25). The first term ρ′ denotes the
geometry term which can be scaled to any arbitrary value h1, i.e [10].

M∑
m=0

(αm + γm) = h1 (2.26)

A geometry-free combination is obtained if h1 = 0, geometry-preserving if h1 = 1. In a similar way,
the first order ionospheric delay I ′k1,r can be scaled by any arbitrary value h2 as follows [10]:

M∑
m=0

(αm − γm) q2
1m = h2 (2.27)

where ionosphere-free combination corresponds to h2 = 0, ionosphere-preserving to h2 = 1. Sec-
ond order ionospheric delay can be treated in the similar way.

The next term on the right side of Eq. (2.25) describes the linear combination of integer ambigu-
ities which is equal to an integer ambiguityNk

u times the wavelength λm of the linear combination.
The corresponding phase weight is given by

αm =
jmλ

λm
(2.28)

where jm is an integer weight.

The last term of eq. (2.25) describes the linear combination of phase and code noises. Its vari-
ance is given by:

σ2 =
M∑
m=0

(α2
mσ

2
εkr,m

+ γ2
mσ

2
ηkr,m

) (2.29)
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Taking into account all constraints, optimum αm and γm are determined to maximize ambiguity
discrimination D:

D =
λ

2σ
(2.30)

Its maximization corresponds to the minimization of the probability of wrong fixing for a
geometry-free, ionosphere-free linear combination. For the details on determination of the co-
efficients αm and γm refer to [10], [11] and [12].
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3. Precise positioning with Galileo

This chapter focuses on the evaluation of the Galileo system capability for precise absolute, as
well as relative positioning. First, an introduction into the Galileo system is provided, including its
innovations compared to GPS, current status and signals. Then, the first static short-baseline test
is described. The noise level of double-difference Galileo E1-E5 code measurements is discussed
and the reliability of widelane integer ambiguity resolution with double-difference E1-E5 code
and phase measurements in terms of the ratio of the squared measurement residuals is presented.
Afterwards, the second kinematic long-baseline test is described. The stability of the single-epoch
float ambiguity estimation in RTK positioning with Melbourne-Wübbena linear combinations is
demonstrated. In addition, the Galileo fixed phase residuals of integer-fixed widelane code-carrier
combination and float-fixed narrowlane phase-only combination are compared. Moreover, we com-
pare the fixed phase residuals of PPP with GPS and Galileo and observe an improved performance
of Galileo even for the equal weighting of both measurements. Finally, the joint subset optimiza-
tion and integer least-squares estimation in case of phase cycle slips for PPP and RTK with GPS
and Galileo is presented.

3.1 The European Global Navigation Satellite System Galileo

Once fully operational, Galileo Walker constellation will include 30 satellites (27 operational and
3 spares) in Medium Earth Orbit (MEO) spread evenly around each of three orbital planes with
inclination of 56° to the equator [4]. The inclination of Galileo orbital planes was chosen to provide
a better coverage at high latitudes, especially for operation over northern Europe, an area poorly
covered by GPS. The orbital revolution period of the Galileo satellite is 14 h 7 min.

Galileo is independent but fully interoperable with GPS and GLONASS [13], which will
roughly double the number of satellites available for positioning at every moment in the future.
This will allow more accurate and reliable position determination even in rather difficult environ-
ments such as big cities where high buildings can obscure signals from low-elevation satellites.
Although similar to GPS, Galileo offers a few technical innovations not available to civilian users
before. Table 3.1 summarizes most important of them according to Henkel [2].

Falcone et al. described the current status of the Galileo system in [14]. The deployed satellite
constellation includes four satellites: Galileo PFM (PRN 11), Galileo FM2 (PRN 12), Galileo
FM3 (PRN 19) and Galileo FM4 (PRN 20). At the moment its program is in In-Orbit Validation
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Orbits Altitude of 23200 km:
⇒ Ground track repetition period of 10 days (instead of 1 day for GPS)
⇒ Reduction of resonances due to periodic movement over areas with irregular
gravitational field→ less satellite maneuvers required

Satellites H2 maser as satellite clock:
⇒ Improved stability over relevant time intervals
⇒ Improved estimation of satellite clock errors

Signals - Three frequency bands with larger signal bandwidths:
⇒ Improved estimation and elimination of ionospheric delays of first and second
order
⇒ Increased reliability of carrier phase integer ambiguity resolution
- Binary Offset Carrier (BOC) modulation→ power shift to the edges of spectrum:
⇒ Lower Cramer Rao bound
⇒ Improved code delay tracking and stronger multipath suppression
- Composite BOC on E1, linear combination of BOC(1,1) and BOC(6,1)
modulations:
⇒ Receivable signal for narrowband receivers
⇒ Low noise level and multipath for wideband receivers

Table 3.1: Innovations of Galileo [2]

(IOV) phase, which consists of qualifying the ground, space and user segments through continuous
operation, as well as extensive in-orbit and on-ground tests.

The Galileo IOV satellites transmit modulated signals on all three carriers, as well as navi-
gation messages for the following types of services: F/NAV corresponding to the Open Service
(OS), I/NAV corresponding to the Safety of Life (SoL), and G/NAV corresponding to the Public
Regulated Service (PRS). In the current configuration, the navigation message signal flags are set
as follows:

• Signal Health Status flag is set to ”Signal component is currently in test”, indicating that vali-
dation testing is still going;

• Data Validity Status flag can be set to ”Nominal” or ”Working without guarantee” depending
on when navigation data were last uploaded on-board of the satellites.

These flags are used by receivers to determine whether or not to track a satellite and include
its range measurements and corresponding navigation data as valid input into the positioning algo-
rithm. With four operational satellites present at the moment, Galileo-only position fix achievement
and its performance depends on the location of receivers and the time of a test. Overall, the com-
plete Galileo constellation is visible for maximum two to five hours per day depending on location
[14].
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3.2 Galileo signals

Each Galileo satellite transmits three independent Code Division Multiple Access (CDMA) sig-
nals, named E1, E5 and E6. The E5 signal is further sub-divided into two signals denoted E5a and
E5b. Each signal supports one or more services planned to be provided by Galileo. Galileo carrier
signal characteristics are presented in Table 3.2.

Signal Carrier frequency
(MHz)

Receiver reference
bandwidth (MHz) Modulation type (OS)

E1 1575,420 24,552 CBOC(6,1,1/11)
E5a 1278,750 20,460 BPSK(10)
E5b 1191,795 20,460 BPSK(10)
E5 1176,450 51,150 AltBOC(15,10)
E6 1207,140 40,920 BPSK(5) (CS)

Table 3.2: Galileo carrier signals [1]

A major difference of Galileo signals to the signals currently emitted by other GNSS is BOC
(resp. AltBOC) modulation scheme and the large bandwidth employed for most of the signals [13].
The standard BOC modulation is a square subcarrier modulation. The baseband signal is multiplied
by a rectangular subcarrier, which splits the spectrum of the signal into two parts, located on the left
and the right side of the carrier frequency. Such modulation scheme presents several advantages
as described in Table 3.1. The idea of alternate BOC (AltBOC) modulation is to perform the
same process but multiplying the base band signal by a complex rectangular subcarrier. As a
result, the signal spectrum is not split up, but only shifted to higher (or lower) frequencies [13].
Galileo E5 is generated by a special multiplexing that combines two signals (E5a and E5b) in a
constant envelope, and then amplified through a very wideband amplifier [15]. The final bandwidth
of the signal is 51.150 MHz [1]. For more details on the Galileo system signals design and BOC
modulation refer to [7], [1] and [13] .

The generation of combined E5 signal presents several advantages [13]:

• gain in precision due to shift of the signal power to the edges of the spectrum;

• low correlation losses, thermal noise and code multipath;

• optimization of the use of E5a and E5b signals: low-cost receivers can use a single band,
whereas more complex receivers can operate in a dual mode single band mode (non-coherent
reception of E5a and E5b signals) or in a coherent dual band mode (reception of E5 signal) to
get advantages in term of performance.
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3.3 Static short-baseline test

For the static short-baseline test a set-up of two test receivers was arranged at the Roof Laboratory
of the Institute for Communications and Navigation of Technische Universität München (TUM)
with a fixed baseline of 1.25 m (see Fig. 3.1). The skyplot plot of the Galileo satellites during the
test is presented in Fig. 3.2 showing PRN 12 with the high elevation over 70° and PRN 11, PRN
19 and PRN 20 with elevations higher than 20° .

Figure 3.1: Static short-baseline test set-up. Crosses mark the positions of the test receivers

Figure 3.2: Skyplot Roof Laboratory of the Institute for Communications and Navigation of
TUM

Single-epoch E1-E5 widelane integer ambiguity resolution for a baseline of 1.25 m with base-
line length and height a priori information (as determined by GPS) was performed according to the
following procedure:
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1. Calculation of ionosphere-free combination ρk1,IF for code measurements of receiver 1 accord-
ing to Eq. (2.15) with coefficients αE1 = 2.261 and αE5 = -1.261 determined according to Eq.
(2.14).

2. Least-squares single-epoch estimation of the absolute position ~xr1 of receiver 1 from
ionosphere-free code-only combination. Slant tropospheric delays T k1 are estimated according
to the blind MOPS model as described in the Section 4.2. The covariance matrix of ionosphere-
free code combination is obtained by the estimation of the noise statistics with an exponential
delay model [16]. The inverse of the covariance matrix provides the weighting matrix for the
least-squares estimation. The final position of receiver 1 is obtained by the averaging of the
results over time. For more details on the least-squares estimation refer to e.g. [7].

3. Computation of E1-E5 double-difference code measurements ρ1k
12,m according to Eq. (2.9), as

well as double-difference E1-E5 phase measurements ϕ1k
12,m according to Eq. (2.11). PRN 12

was assumed to be the reference satellite as the one with the highest elevation. From E1-E5
double-difference phase measurements, the widelane combination λWLϕ

kl
12 is calculated ac-

cording to Eq. (2.19). Forming double differences eliminates both receiver and satellite biases,
as well as clock offsets [10]. In addition, ionospheric and tropospheric effects are canceled on a
short baseline. Moreover, the widelane combinations increases wavelength to λWL = 75.2 cm.
This simplifies the resolution of the carrier phase integer ambiguities.

4. Estimation of noise statistics from a number of double-difference code measurements and
widelane combination for the measurement covariance matrix [17].

5. Determination of single-epoch constrained least-squares float solution of the baseline vector
and widelane ambiguities for every epoch, which takes a priori information about the horizontal
baseline length and height into account.

The double-difference code as well as widelane combination measurements for every epoch in
matrix-vector notation are given by:

Ψ =



ρ12
12,E1

...

ρ1K
12,E1

ρ12
12,E5

...

ρ1K
12,E5

λWLϕ
12
12

...

λWLϕ
1K
1K



= Hgeo,LξL + AN + η, (3.1)
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with the differential geometry matrix Hgeo,L and the baseline vector ξL = RL
~b12 in the lo-

cal East-North-Up frame, the transformation matrix RL from the Earth-Centered, Earth-Fixed
(ECEF) to ENU coordinate frame, the double-difference widelane ambiguities N , the mapping
matrix A which maps the differential ambiguities into the measurements as well as measure-
ment noise η. Considering the a priori knowledge about the height component zL and the length
lap = 1.25 m of the horizontal baseline ξL = (xL, yL)T, the measurement model can be simplified
to:

Ψ̃ = Ψ −H(z)
geo,LzL

= H
(x,y)
geo,LξL + AN + η with ‖ξL‖ = lap (3.2)

We express the least-squares optimization (minimization) problem with a baseline length con-
straint as a Lagrange optimization, i.e. [18]

min
ξL,N,µ

∥∥∥Ψ −H(x,y)
geo,LξL − AN

∥∥∥2

Σ−1
Ψ

+ µ · (‖ξL‖2 − l2ap), (3.3)

where µ is the Lagrange parameter. Introducing the vector of unknowns ξ̃L = (ξT
L , N

T), the
combined geometry matrix H̃geo,L = (H

(x,y)
geo,L, A) and selection matrix S = (12×2, 02×K−1), we

reformulate the problem (3.3) as:

min
ξ̃L,µ
‖Ψ̃ − H̃geo,Lξ̃L‖2

Σ−1
Ψ

+ µ · (‖Sξ̃L‖2 − l2ap) (3.4)

To find the constrained float solution of the baseline components and differential ambiguities,
the partial derivative of the cost function of (3.8) with respect to ξ̃L is set to zero. Solving it for
ξ̃L yields:

ˆ̃ξL = (H̃T
geo,LΣ

−1
Ψ H̃geo,L + µSTS)−1H̃T

geo,LΣ
−1

Ψ̃
Ψ̃ (3.5)

The corresponding Lagrange parameter µ is determined by inserting Eq. (3.5) in the original
equation of the constraint (3.8) and finding the root of the function

f(µ) = ‖S(H̃T
geo,LΣ

−1
Ψ H̃geo,L + µSTS)−1H̃T

geo,LΣ
−1
Ψ Ψ̃)‖2 − l2ap (3.6)

As no closed solution of (3.6) exist, the root is found iteratively with the secant method. The
estimate of µ on the (n+1)-th iteration is determined as:

µ(n+1) = µ(n) − f(µ)

f ′(µ)

∣∣∣∣
µ=µ(n)

with µ(0) = 0 (3.7)

6. Integer search for widelane double-difference integer ambiguities candidate vectors is per-
formed.
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The unconstrained least-squares minimization problem is given by:

min
ξL,N

∥∥∥Ψ̃ −H(x,y)
geo,LξL − AN

∥∥∥2

Σ−1
Ψ

, (3.8)

Decomposing (3.8) into two orthogonal terms, we get:∥∥∥Ψ̃ −H(x,y)
geo,LξL − AN

∥∥∥2

Σ−1
Ψ

=
∥∥∥PH(Ψ̃ −H(x,y)

geo,LξL − AN) + P⊥H (Ψ̃ −H(x,y)
geo,LξL − AN)

∥∥∥2

Σ−1
Ψ

=
∥∥∥PH(Ψ̃ −H(x,y)

geo,LξL − AN)
∥∥∥2

Σ−1
Ψ

+
∥∥∥P⊥H (Ψ̃ −H(x,y)

geo,LξL − AN)
∥∥∥2

Σ−1
Ψ

=
∥∥∥PH(Ψ̃ −H(x,y)

geo,LξL − AN)
∥∥∥2

Σ−1
Ψ

+
∥∥∥(P⊥H Ψ̃ − ĀN)

∥∥∥2

Σ−1
Ψ

(3.9)

where P⊥H is an orthogonal projector on the space H , PH + P⊥H = 1 and Ā = P⊥HA.

We multiply the measurement vector given by the model (3.2) by P⊥H :

P⊥H Ψ̃ = P⊥H (H
(x,y)
geo,LξL + AN + η)

= ĀN + P⊥H η (3.10)

The least-squares optimization of the float solution of ambiguities N is written as follows:

min
N

∥∥∥P⊥H Ψ̃ − ĀN∥∥∥2

Σ−1
Ψ

, (3.11)

Consequently, the unconstrained float solution of N is given by:

N̂ = (ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ (P⊥H Ψ̃) (3.12)

The projector PĀ on the space Ā is defined as:

PĀ = Ā(ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ (3.13)

where PĀĀ = Ā.

Thus the second term of (3.9) can be decomposed into two orthogonal terms as:∥∥∥P⊥Ā (P⊥H Ψ̃ − ĀN) + PĀ(P⊥H Ψ̃ − ĀN)
∥∥∥2

Σ−1
Ψ

=
∥∥∥P⊥Ā P⊥H Ψ̃∥∥∥2

Σ−1
Ψ

+
∥∥∥Ā(N̂ −N)

∥∥∥2

Σ−1
Ψ

(3.14)

where PĀ + P⊥
Ā

= 1.
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The first term of (3.9) can be re-written as follows:∥∥∥PH(Ψ̃ −H(x,y)
geo,LξL − AN)

∥∥∥2

Σ−1
Ψ

=
∥∥∥PH(Ψ̃ − AN)− PHH(x,y)

geo,LξL)
∥∥∥2

Σ−1
Ψ

=
∥∥∥H(x,y)

geo,L(ξ̌L(N)− ξL)
∥∥∥2

Σ−1
Ψ

(3.15)

where the unconstrained fixed baseline estimate ξ̌L(N) is given by:

ξ̌L(N) = (HT
geo,LΣ

−1
Ψ Hgeo,L)−1HT

geo,LΣ
−1
Ψ (Ψ̃ − AN) (3.16)

Finally, (3.9) can be presented as combination of three different terms:∥∥∥H(x,y)
geo,L(ξ̌L(N)− ξL)

∥∥∥2

Σ−1
Ψ

+
∥∥∥Ā(N̂ −N)

∥∥∥2

Σ−1
Ψ

+
∥∥∥P⊥Ā P⊥H Ψ̃∥∥∥2

Σ−1
Ψ

(3.17)

where the first term denotes the residuals of the baseline, second term - integer ambiguity resid-
uals and third term - irreducible noise. The first term can be set to zero by choosing ξ̌L(N)= ξL.
The integer search for the ambiguities is based on the minimization of the second term and is
performed with the unconstrained LAMBDA method of Teunissen, which includes decorrela-
tion of the float ambiguities as a prerequisite of an efficient search ([19] and [20]). For each
integer candidate vector the squared weighted sum of the measurement residuals is computed
as ∥∥∥Ψ̃ −Hgeo,Lξ̌L − AŇ

∥∥∥2

Σ−1
Ψ

(3.18)

The vector of candidates which minimizes the sum (3.18) is selected.

7. Fixing of E1-E5 widelane double-difference integer ambiguities Ň and determination of
single-epoch least-squares fixed solution for the baseline vector ξ̌L using unambiguous double-
difference widelane phase combination measurements λWLϕ̃

kl
12.

The double-difference Galileo E1-E5 code measurements are presented in Fig. 3.3 and Fig.
3.4 respectively. The standard deviation of the double-difference code measurements between two
test receivers and satellites PRN 11 and PRN 12 over a minute is σ(11,12)

E1 = 20.6 cm on E1 and
σ

(11,12)
E5 = 4.7 cm on E5. As the noise of double difference measurements is increased by about a fac-

tor of 2 with the respect to the noise of individual measurements under assumption of equal individ-
ual measurement noise, the corresponding individual measurements noise is σ11

E1(E = 50◦) = 10.3
cm on E1 and σ11

E5(E = 50◦) = 2.3 cm on E5. This result demonstrates that the Galileo signals de-
sign represent clear advantage in terms of code noise reduction. In addition, the coherent reception
of broadband E5 signal must be performed to fully benefit from its low code noise. It opens new
possibilities for the precise positioning with low-cost single-frequency GNSS receivers.
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Figure 3.3: Double-difference E1 Galileo code measurements

Figure 3.4: Double-difference E5 Galileo code measurements
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The ratio of the squared weighted sum of the measurement residuals of the second best integer
candidates vector Ň2 to the best integer candidates vector Ň1 of the integer ambiguity search is
computed as follows:

r =

∥∥∥Ψ̃ −Hgeo,Lξ̌L − AŇ2

∥∥∥2

Σ−1
Ψ∥∥∥Ψ̃ −Hgeo,Lξ̌L − AŇ1

∥∥∥2

Σ−1
Ψ

(3.19)

The typical ratio for L1-L2 integer ambiguity resolution is 1-2. Therefore additional informa-
tion has to be used for reliable selection of integer candidates, e.g. the difference between the length
of the baseline estimate and the a priori known baseline. Based on this approach, the Maximum
Aposteriori estimator was developed by Henkel et al., that combines both error norms for integer
ambiguity resolution [18]. The ratio of the integer search of E1-E5 widelane double-difference in-
teger ambiguity resolution is presented in Fig. 3.5, taking values between 20 and 220. This consid-
erably simplifies the selection of the correct candidate for integer ambiguity based on the squared
weighted sum of the measurement residuals. Note that each of the 1600 independent ambiguity
resolutions performed for this test was correct. It demonstrates that the integer ambiguity resolu-
tion with Galileo E1-E5 signals is extremely reliable. The phase residuals of E1-E5 constrained
fixed solution are presented in Fig. 3.6. The residuals are in the order of a few centimeters, that is a
good indicator of correct ambiguity fixing. Offset and drifts observed are attributed to interferences
and multipath.

Figure 3.5: Error norm ratio of integer LAMBDA search
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Figure 3.6: Phase residuals of E1-E5 constrained fixed solution

3.4 Kinematic long-baseline test

For the kinematic long-baseline test, one test receiver was arranged at the Roof Laboratory of the
Institute for Communications and Navigation of TUM, while another test receiver was mounted in
a car. The mobile test was performed in the urban area of Maisach, Germany, with baseline length
of about 25 km (see Fig. 3.7). The visibility plot of Galileo satellites during the test is presented in
Fig. 3.8, showing PRN 12 and PRN 19 with high elevations over 70° and PRN 11 with elevation
higher than 40° . PRN 20 was not available at the time of the test due to a two weeks transmission
outage.

3.4.1 Long-range RTK with 25 km kinematic baseline

For long-range RTK with 25 km kinematic baseline ambiguity resolution with three different lin-
ear combinations was performed: the Melbourne-Wübbena linear combination, the code-carrier
widelane linear combination and the phase-only narrowlane linear combination.

Single-epoch L1-L2 and E1-E5 widelane ambiguity resolution with Melbourne-Wübbena lin-
ear combination was performed using measurements from Galileo and GPS jointly according to
the following procedure:
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Figure 3.7: Mobile long-baseline test set-up

Figure 3.8: Skyplot Roof Laboratory of the Institute for Communications and Navigation of
TUM

1. Calculation of ionosphere-free combination ρk1,IF for code measurements of the receiver 1
according to Eq. (2.15) with coefficients αL1 = 2.546 and αL2 = -1.546 for GPS L1-L2 and
αE1 = 2.261 and αE5 = -1.261 for Galileo E1-E5 determined according to Eq. (2.14).

2. Least-squares single-epoch estimation of absolute position of receiver 1 from ionosphere-free
code-only combination as described in Section 3.3. The final position of the receiver 1 is ob-
tained by the averaging of the result over time.
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3. Computation of L1-L2 and E1-E5 double-difference ρkl12,m code measurements according to
Eq. (2.9) and double-difference ϕkl12,m phase measurements according to Eq. (2.11). From
double-difference measurements the Melbourne-Wübbena linear combination was computed
according to Eq. (2.23). The double-difference eliminates receiver and satellite clock offsets, as
well as biases. The Melbourne-Wübbena combination increases the wavelength to λWL = 86.2
cm for GPS L1-L2 and λWL = 75.2 cm for Galileo E1-E5. It contains only widelane double-
difference ambiguities and code noise, and thus assumes a constant value for time intervals
without cycle slips.

4. Determination of the unconstrained single-epoch least-squares float solution for the baseline
components ~̂b12 and widelane double-difference ambiguities N̂kl

12,WL.

A comparison of L1-L2 and E1-E5 widelane ambiguities is presented in Fig. 3.9 and Fig. 3.10.
The mean value for each ambiguity was calculated and subtracted for the ease of comparison.

Figure 3.9: GPS L1-L2 double-difference widelane ambiguities
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Figure 3.10: Galileo E1-E5 double-difference widelane ambiguities

Ambiguity resolution with the Melbourne-Wübbena combination combination is determined
by the code noise of individual measurements. Galileo E1-E5 widelane double-difference ambigu-
ities vary between ±0.5 cycles, while for GPS L1-L2 ambiguities the variation reaches values of
±2 cycles. It demonstrates that Galileo E1-E5 ambiguity resolution for RTK with the Melbourne-
Wübbena combination is more accurate and reliable, benefiting from lower code noise of Galileo
signals. The use of Galileo E1-E5 signals will reduce the initialization time for RTK.

Single-epoch E1-E5 ambiguity resolution with the code-carrier widelane linear combination
and phase-only narrowlane linear combination is performed using the Galileo measurements ac-
cording to the following procedure:

1. Calculation of ionosphere-free combination ρk1,IF for code measurements of receiver 1 accord-
ing to Eq. (2.15) with coefficients αE1 = 2.261 and αE5 = -1.261 determined according to Eq.
(2.14).

2. Least-squares single-epoch estimation of absolute position of receiver 1 from ionosphere-free
code combination as described in Section 3.3. The final position of the receiver 1 is obtained
by the averaging of the result over time.

3. Computation of E1-E5 double-difference code measurements ρkl12,m according to Eq. (2.9) and
double-difference phase measurements ϕkl12,m according to Eq. (2.11). Geometry-preserving,
ionosphere-free code-carrier widelane combination of minimum noise amplification with
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wavelength of λ = 3.092 m is computed from E1-E5 double-difference code and phase mea-
surements according to Eq. (2.25) with the following coefficients:

αE1 = 16.25 αE5 = −12.29

γE1 = 0.08 γE5 = −3.04

Coefficients were determined from the following criteria as described in Section 2.3:

• geometry-preserving constraint (h1 = 1);

• ionosphere-free constraint (h2 = 0);

• integer ambiguity coefficients jE1 = 1 and jE5 = -1;

• phase noise σϕ = 1 mm, code noise σρ,E1 = 11.14 cm on E1 and code noise σρ,E5 = 1.95 cm
on E5 [10];

• minimization of the noise variance of the E1-E5 code-carrier combination.

The geometry-preserving, ionosphere-free phase-only combination ϕk12,IF of minimum noise
amplification is computed from E1-E5 double-difference phase measurements according to
Eq. (2.15).

4. Determination of unconstrained least-squares single-epoch float solution for the baseline com-
ponents ~̂b12 as well as ambiguities N̂kl

12. A priori information on height component is taken as
computed from GPS measurements.

5. Ambiguity fixing and computation of least-squares single-epoch fixed solution from unam-
biguous measurement combinations. Large wavelength of widelane code-carrier combination
simplifies integer ambiguity resolution, so the float ambiguities are rounded to the nearest in-
teger values and fixed. Phase-only combination posses lower noise, therefore ambiguities are
fixed to the real float values in order to allow absorption of unconsidered measurement errors.

Double-difference residuals of integer-fixed E1-E5 widelane code-carrier combination and
real-fixed E1-E5 phase-only combination are presented in Fig. 3.11 and Fig. 3.12. Residuals of
integer-fixed are in the order of 1 m, while real-fixed only in the order a 1 cm due to low noise of
phase measurements.
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Figure 3.11: Residuals of integer-fixed E1-E5 widelane code-carrier combination

Figure 3.12: Residuals of real-fixed E1-E5 narrowlane phase-only combination
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3.4.2 Precise Point Positioning

The traditional Precise Point Positioning scheme is based on Laurichesse’s model [21], while we
adapt a different approach. The absolute kinematic position of the mobile receiver 2 was estimated
for every epoch without any corrections using measurements from Galileo and GPS jointly accord-
ing to the following procedure:

1. Calculation of ionosphere-free combination ρk2,IF for code measurements and ϕk2,IF for phase
measurements of receiver 2 according to Eq. (2.15) with coefficients αL1 = 2.546 and αL2 = -
1.546 for GPS L1-L2 and αE1 = 2.261 and αE5 = -1.261 for Galileo E1-E5 determined accord-
ing to Eq. (2.14).

2. Least-squares single-epoch estimation of the absolute three-dimensional position ~̂xr2 of the
receiver 2, receiver clock offsets δt̂2,GPS for GPS and δt̂2,Galileo for Galileo, as well as float am-
biguities N̂k

2 using ionosphere-free code-only and phase-only combinations. Slant tropospheric
delays T̂ k2 are modeled according to blind MOPS model as described in Section 4.2. Covari-
ance matrix of ionosphere-free code and phase combinations is obtained by the estimation of
the combinations statistics with an exponential delay model [16]. The inverse of the covariance
matrix provides weighting matrix for the least-squares solution [4].

3. Averaging of the float ambiguities N̂k
2 and fixing to real float values to allow absorption of

satellite and receiver biases, as well as errors such as tropospheric, satellite clock and orbit
modeling errors.

4. Determination of fixed least-squares solution for three-dimensional receiver position ~̌xk2, as well
receiver clock offsets δť2,GPS for GPS and δť2,Galileo for Galileo using unambiguous ionosphere
free phase-only combination λϕ̃k2,IF.

GPS fixed phase residuals are presented in Fig. 3.13. The float ambiguities at every epoch were
averaged over all epochs processed and fixed to the resulting float values. After ambiguity fixing
the drift of the residuals up to 3 cm/min is observed, that results from the accumulation of float
ambiguities combined with unconsidered errors and biases with time and consequent low weight
given to the new values.

To avoid such a case, a different approach of float ambiguity averaging over only last 200
epochs was used. The resulting GPS and Galileo fixed phase residuals are presented in Fig. 3.14
and Fig. 3.15. The GPS fixed phase residuals GPS are in order of ±4 cm, while Galileo residuals
are in the order of ±1 cm. Galileo E1 and E5 signals posses a lower measurement noise and are
less prone to multipath, that is beneficial for PPP without error compensation.
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Figure 3.13: GPS fixed phase residuals with ambiguities averaged over all epochs

Figure 3.14: GPS fixed phase residuals with ambiguities averaged over last 200 epochs
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Figure 3.15: Galileo fixed phase residuals with ambiguities averaged over last 200 epochs

3.5 Joint subset optimization and integer least-squares estimation

Cycle slips are carrier phase jumps of n · λ
2

cased by deep power fades due to multipath and/or
signal shadowing that occurs for receivers moving in urban areas. For the real-time kinematic
applications such as PPP and RTK instantaneous cycle slip detection and correction is required
to reach the desired positioning accuracy. The subset of ambiguities with cycle slips, as well as
the cycle slip values itself must be determined for the integer ambiguity refixing. As joint subset
selection and integer least-squares estimation solely based on minimizing the Sum of Squared
Errors (SSE) shows poor performance, a new approach is required.

We model time differences between code and carrier phase measurements of all visible satel-
lites as:

Ψ = H∆ξ + A(s)∆N(s) + η, (3.20)

with the geometry matrix H , change of the receiver position and receiver clock offset ∆ξ between
two subsequent epochs, subset s of phase measurements being simultaneously affected by cycle
slips, integer cycle slips ∆N(s) for the phase measurements of the subset and the mapping matrix
A(s) for the mapping of the ambiguity cycle slips into the measurement space as well as the mea-
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surement noise η. The least-squares estimation of ∆ξ, ∆N(s) and the subset s is given by:

min
∆ξ,∆N(s),s

‖Ψ −H∆ξ − A(s)∆N(s)‖2
Σ−1
Ψ

=

min
s

(
min

∆ξ,∆N(s)
‖Ψ −H∆ξ − A(s)∆N(s)‖2

Σ−1
Ψ

)
(3.21)

The minimization requires for each subset s a search for all integer candidate vectors inside a
predefined search space volume χ2 with integer decorrelation that fulfill the criterion [22]

min
∆ξ

(
‖Ψ −H∆ξ − A(s)∆N(s)‖2

Σ−1
Ψ

)
≤ χ2 (3.22)

The subset and cycle slip values of minimum squared residuals are selected.

The squared error norm of (3.21) was decomposed by Teunissen in [22] into three orthogonal
terms:

‖Ψ −H∆ξ − A(s)∆N(s)‖2
Σ−1
Ψ

=

‖∆N̂(s)−∆N(s)‖2
Σ−1

N̂12

+ ‖∆ξ̌(∆N(s))−∆ξ‖2
Σ−1

ξ̌12

+ ‖P⊥Ā P
⊥
HΨ‖2

Σ−1
Ψ

(3.23)

where P⊥H is an orthogonal projector on the space of H and Ā = P⊥HA and the float solution of the
cycle slips assuming subset si given by

∆N̂(si) =
(
(Ā(si))

TΣ−1
Ψ Ā(si)

)−1
(Ā(si))

TΣ−1
Ψ Ψ (3.24)

The first term of (3.23) denotes cycle slip residuals, the second term velocity and clock drift
residuals and the third term includes the irreducible noise. For sequential fixing, the probability of
a wrong fixing can be derived analytically as:

Pwf = 1− Ps = 1−
K∏
k=1

∫ 0.5

−0.5

1√
2πσ2

∆N̂k|1,...,k−1

e
−

ε2

∆N̂k|1,...,k−1

2σ2

∆N̂k|1,...,k−1 dε2
∆N̂k|1,...,k−1 (3.25)

The minimum and maximum probabilities of wrong fixing over all subsets are shown in Fig.
3.16. Increase of subset length over 7 results in a considerable increase of minimum probability of
wrong fixing among all subsets due to dependency on code measurements.

Applying the triangular LDLT decomposition as defined in [22] to the first term gives:

‖∆N̂(s)−∆N(s)‖2
Σ−1

N̂

=
K∑
l=1

(
∆N l(s)−∆N̂ l|1,...,l−1(s)

)2

/σ2
∆N̂ l|1,...,l−1 (3.26)
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Figure 3.16: Probability of a wrong fixing over all subsets

where ∆N̂ l|1,...,l−1(s) is the float cycle slip and σ2
∆N̂ l|1,...,l−1 is the variance of the float cycle slips.

Combining (3.22), (3.23) and (3.26), the criterion of the integer search becomes(
∆Nk

12(s)−∆N̂k|1,...,k−1
12 (s)

)2

/σ2

∆N̂
k|1,...,k−1
12

≤ χ2 − ‖P⊥Ā P
⊥
HΨ‖2

Σ−1
Ψ
−

k−1∑
l=1

(
∆N l

12(s)−∆N̂ l|1,...,l−1
12 (s)

)2

(σ
∆N̂

l|1,...,l−1
12

)2
(3.27)

The statistics of the float solution are given by the bias b∆N̂(si)
and the covariance matrix

Σ∆N̂(si)
that follows from (3.24), i.e.:

b∆N̂(si)
=
(
(Ā(si))

TΣ−1
Ψ Ā(si)

)−1
(Ā(si))

TΣ−1
Ψ A(s̄)∆N(s̄)−∆N (3.28)

Σ∆N̂(si)
=
(
(Ā(si))

TΣ−1
Ψ Ā(si)

)−1
(3.29)

Note that if the bias b∆N̂(si)
is close to an integer for si 6= s̄, then it does not affect the sum of

squared residuals given by

min
∆ξ,∆N(si)

‖Ψ −H∆ξ − A(si)∆N(si)‖2
Σ−1
Ψ

(3.30)
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As a consequence, the reliability of

min
∆ξ,∆N(si)

‖Ψ −H∆ξ − A(si)∆N(si)‖2
Σ−1
Ψ

(3.31)

is then of comparable level to the reliability of

min
∆ξ,∆N(s̄)

‖Ψ −H∆ξ − A(s̄)∆N(s̄)‖2
Σ−1
Ψ

(3.32)

If the ambiguities of a subset si refer to satellites of higher elevation than the ambiguities of s̄,
then it is likely to choose the wrong subset.

To solve this problem, we exploit that Ā(si) = P⊥HA(si) depends on the geometry matrix H
and vary it by using subset of measurements. From a set of the measurements from K satellites
available we exclude ones from the satellite l. Then the Sum of Squared Errors for each remaining
subset si of ambiguities is given by:

SSE(si, l) = min
∆ξ
‖Ψ∀k\l −H∀k\l∆ξ − A∀k\l(si)∆Ň(si)‖2

Σ−1
Ψ
∀ l,∀ si (3.33)

where the fixed integer cycle slip estimate is given by

∆Ň(si) = min
∆N(si)

‖P⊥H (Ψ − A(si)∆N(si))‖2
Σ−1
Ψ

(3.34)

The selection of the final subset is based on the criteria

š = min
si

(
max
l

(SSE(si, l))
)

(3.35)

The probability of wrong subset selection based on improved subset search is decreased in
comparison to the search of subset based on minimum Sum of Squared Errors as shown in Fig.
3.17.

Using the new approach for ambiguity refixing after cycle slip occurs, the extended measure-
ments collected within the long-baseline test by the mobile receiver were processed according to
the algorithm described in Subsection 3.4.2. The estimated ambiguities together combined with
phase biases are presented in Fig. 3.18.

To analyze the bias stability, maximum bias changes within the 5 min (Fig. 3.19), 1 min (Fig.
3.20) and 1 s (Fig. 3.21) were computed. The Fig. 3.21 demonstrates the stability of Galileo
ionosphere-free phase biases over short time periods, i.e. a stability of 0.5 cm/s is achievable.
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Figure 3.17: Probability of a wrong subset selection for two types of search

Figure 3.18: Galileo IF ambiguities and biases
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Figure 3.19: Maximum bias change within 5 min

Figure 3.20: Maximum bias change within 1 min
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Figure 3.21: Maximum bias change within 1 sec
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4. Absolute positioning with a system of low-cost GPS
receivers

In this chapter a Virtual Reference Station concept is developed for a network of low-cost single-
frequency GPS receivers. First, an introduction into Virtual Reference Station method is given.
Then, the precise absolute position of the reference receiver r1 is estimated using single-difference
code and phase measurements in a Kalman filter with additional estimation of ambiguities, com-
bined residual zenith ionospheric delays and corresponding ionospheric delay gradients. Subse-
quently, the relative position of receiver r2 is determined using double-difference code and phase
measurements (float solution) with consecutive ambiguity fixing with the classical LAMBDA
method of Teunissen and least-squares fixed position estimation. The combined single-difference
tropospheric and ionospheric errors, satellite biases as well as ambiguities for carrier phase mea-
surements in form of corrections are derived from the single-difference code and phase measure-
ments of both reference receivers and interpolated according to the model proposed. Finally, the
method for the determination of the user receiver absolute position from corrected single-difference
measurements is introduced.

4.1 The Virtual Reference Station method

The Virtual Reference Station method is based on having a network of GPS reference stations, at
least three, connected via data links to a common network server. A computer at the control center
continuously gathers the information from all the stations and creates a database of the corrections.
These are used to create a Virtual Reference Station, located at the position of the user receiver,
together with the reference data, which would have come from it. The user receiver interprets and
uses the data just as if it has come from real reference station. The errors cancel out better than by
using a more distant reference station, that dramatically improves performance of RTK [23]. This
concept is visualized in Fig. 4.1.

The Virtual Reference Stations operation follows the following principles ([3] and [24]):

1. Pseudorange and carrier phase measurements from the reference station network are transferred
to the control center, where they undergo quality control procedures.

This step includes station data integrity as well as differential integrity procedures. Station data
integrity performs quality control procedures on pseudorange and carrier phase measurements
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Figure 4.1: Virtual Reference Station set-up [3]

of separate stations. The estimator for the receiver clock error is used to identify outliers in
the pseudorange observations. Potential cycle slips of carrier phase measurements are detected
using the prediction of the observables for the current epoch estimated by especially designed
Kalman filters. Differential integrity extends these procedures to the single-difference observ-
ables between two stations. The differential pseudorange observations are treated in the similar
way, while carrier phase observations are crosschecked against cycle slips using triple differ-
encing.

2. The undifferenced network data is used to compute models of ionospheric, geometric (tropo-
spheric and orbit), as well as multipath errors. These models serve two purposes:

• Provide error correction for DGPS users;

• Reduce the data present in the measurements substantially to enable network ambiguity
fixing.

For modeling of the ionospheric delay, a single layer model of the zenith ionospheric delay
was chosen, which assumes that all active electron content of the atmosphere is concentrated
on a layer with fixed height. The zenith delay at the pierce point and the elevation angle of the
satellite define the total ionospheric delay. To model the zenith delay, simple 2-dimensional
polynomials over geomagnetic latitude φmag and hour angle of the Sun λsun are used [24]:

TEC(φmag, λsun) =
N∑
k=0

k∑
i=0

Ai,kφ
i
magλ

k−i
sun, (4.1)

where Ai,k are polynomial coefficients. Temporary variations are modeled using Kalman filter.
An order of 2 gives best result, allowing to remove about 50% of the ionospheric residual.
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Tropospheric errors are handled by using models for the zenith delay and a mapping function
to obtain a slant delay at a given satellite elevation angle. As existing low-cost tools cannot
provide the desired accuracy of the measurements of meteorological conditions at the receiver
site, the tropospheric scaling technique is used. All deviations of the atmospheric conditions
from the standard conditions are expressed by a scaling factor of the zenith delay, one for
each station. This factor is the troposphere model parameter. Zenith delays are estimated using
modified Hopfield model. To mitigate orbit errors, precise predicted orbits and satellite clock
corrections supplied e.g. by International GNSS service (IGS) are used. These are crosschecked
with broadcast orbits. The influence of tropospheric scaling and orbit errors is modeled based
on the satellite-receiver geometry as follows [24]:

λ(φkr,C +Nk
C) = rkr + c(δτr − δτ k) + γrm(θkr )Tz,r +

∆ ~Xk · ~r kr
rkr

+ εkr (4.2)

with the carrier wavelength λ, ionosphere-free carrier phase observations φkr,C computed ac-
cording to Eq. (2.17), the integer ambiguity Nk

C , the satellite-receiver geometric range rkr , the
speed of light in vacuum c, the receiver clock offset δτr, the satellite clock offset δτ k, the
receiver tropospheric scaling factor γr, the troposphere model value m(θkr )Tz,r, the satellite
position error ∆ ~Xk, the vector pointing from the satellite to receiver ~r kr and the phase noise εkr .
As the reference station position is known, the tropospheric scaling, the orbit errors as well as
the ambiguities for each satellite are estimated with the Kalman filter using ionosphere-free ob-
servations. For the multipath error modeling, the repeatability of multipath effects is exploited
on a day-to-day basis.

3. In a third step, double-difference measurements are re-considered with the aim of fixing their
ambiguities. Two linear combinations of double-differences are considered: the first one is
geometry-preserving and ionosphere-free; the second one is geometry-free. The previously de-
termined orbital errors and tropospheric scaling factors are used to correct the first combination
(relevant only in case of long baselines). The previously determined ionospheric corrections are
used to correct the second combination. The ambiguities NI of geometry-preserving combina-
tion and NC of geometry-free combination can be related to the ambiguities of the absolute
L1-L2 measurements by [24]:(

NC

NI

)
=

 α1 α2

−λ1 · λ
2
2−λ2

1

λ2
1

λ2 · λ
2
2−λ2

1

λ2
1


︸ ︷︷ ︸

T

(
NL1

NL2

)
(4.3)
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Inverting the conversion matrix T leads to the form [24]:(
NL1

NL2

)
= T−1

(
NC

NI

)
(4.4)

The covariance matrix of theNL1/NL2 ambiguities is given as the function of covariance matrix
of the NI/NC ambiguities by:

ΣN̂L1,N̂L2
= T−1 Σ(N̂C ,N̂I) (T−1)T (4.5)

4. In this step, the residuals of the double-difference ambiguity resolution are determined, i.e.

Ckl
12,m = λmϕ

kl
m − λmŇkl

12,m − ~e kl12 b̌12 (4.6)

where b̌12 is the baseline vector between two reference stations. It is either known from the
absolute positions of the reference stations or determined by the LAMBDA method.

5. In the next step "linear" 2-dimensional error models are used to interpolate the double-
difference residuals at the location of the Virtual Reference Station.

Vollath et al. [24] used the three closest reference receivers to set up a linear model for the
double-difference residuals within the triangle (Fig. 4.2).

Figure 4.2: Interpolation and extrapolation of the differential residuals [24]

Choosing one station of a triangle as pivotal station with coordinates (φr, λr), the double-
difference residuals between any pair of satellites k and l is interpolated (or extrapolated) to
the Virtual Reference Station location with coordinates (φv, λv) as [24]:

Ckl
vr,m(φv, λv) =

∂Ckl
m

∂φ
(φv − φr)−

∂Ckl
m

∂λ
(λv − λr)cos(φr) (4.7)
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The interpolation parameters for the latitude ∂Cklm
∂φ

and for the longitude ∂Cklm
∂λ

are uniquely de-
termined by the double-difference corrections/residuals to the other two stations of the triangle
(φ1, λ1) and (φ2, λ2), i.e. [24]:

Ckl
1r,m(φ1, λ1) =

∂Ckl
m

∂φ
(φ1 − φr)−

∂Ckl
m

∂λ
(λ1 − λr)cos(φr) (4.8)

Ckl
2r,m(φ2, λ2) =

∂Ckl
m

∂φ
(φ2 − φr)−

∂Ckl
m

∂λ
(λ2 − λr)cos(φr) (4.9)

The trigonometric function cos(φr) was added to consider the unequal spacing of meridians at
the different degrees of latitude. The quality of the interpolated residuals is determined by the
actual linearity of the residuals over space.

6. On the sixth step the raw measurements of selected reference station, used by the user receiver
in the next step to form double differences, are geometrically displaced to the position of the
Virtual Reference Station. Typically the station nearest to the field user is chosen.

All parts of observation equations that depend on the receiver location have to be corrected
to the position of the Virtual Reference Station. The geometric range at the reception time t
between satellite k and Virtual Reference Station v is approximated as [24]:

r̃kv(t) =
√

(~xk − ~xv)T · (~xk − ~xv), (4.10)

where ~xk is the satellite position at the transmission time and ~xv is the position of the Virtual
Reference Station at the reception time. During the calculation of the satellite position the ro-
tation of the Earth during the signal transmission, as well as change of the signal transmission
time due to the receiver position change still has to be accounted for. Therefore the geometric
range r̃kv is accurate only on a meter level. Using the range approximation (4.10), the approxi-
mate pseudorange between the satellite k and Virtual Reference Station v is given by [24]:

ρ̃kv = ρkr + (r̃kv − rkr ), (4.11)

where ρkr is the pseudorange between satellite k and the original reference station r, r̃kv is the
approximate geometric range between satellite k and the Virtual Reference Station v and rkr
is the exact geometric range between satellite k and the reference station r. This pseudorange
approximation is used to determine the exact satellite position as well as exact geometric range
rkv . Finally, the change in the geometric range between the original reference station r and
Virtual Reference Station v is computed, i.e. [24]:

∆rkv = rkv − rkr (4.12)
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It has to be applied to all observables to displace the reference station measurements to the
Virtual Reference Station position.

7. Finally, the Virtual Reference Station data in terms of displaced code and phase measurements
as well as interpolated double-difference residuals are transferred to the user.

On a typical field session, the following set-up procedure is performed ([3] and [24]):

1. After starting the receiver in real-time positioning mode, the user dials into the Virtual Refer-
ence Station Network service via mobile phone and is authenticated.

2. The local receiver sends a navigation solution of its current position as a rough position estimate
to the computing center.

3. The computing center creates a Virtual Reference Station at this location.

4. A continuous data stream of reference data generated for the Virtual Reference Station position
is sent to the field user receiver, that computes double-difference measurements and applies
corrections provided to fix the integer ambiguities and determine its position with a centimeter
level accuracy.

4.2 Least-squares float solution of absolute position of a reference re-
ceiver

To provide the corrections for the user receiver, first the 3-dimensional position ~xr1 of the first
reference receiver r1 must be estimated. It can be determined using single-frequency precise carrier
phase measurements from K satellites visible at a certain epoch. We consider only satellites with
elevation angle θ over 20°. Choosing satellite 1 as reference, we can form K-1 respective single
differences to eliminate unknown receiver clock offset and receiver biases. The single-difference
carrier phase measurements modeled according to equation (2.1) are rearranged in such a way that
all known parameters (satellite positions and clock offsets, tropospheric delays) are brought on the
left side of the equation and unknown parameters on the right side, i.e.

λϕ12
r1

+ (~e 12
r1

)T ~̂x12 + cδτ̂ 12 − T̂ 12
r1

...

λϕ1K
r1

+ (~e 1K
r1

)T ~̂x1K + cδτ̂ 1K − T̂ 1K
r1

 =


(~e 1
r1

)T

...

(~eKr1 )T

 ~xr1 +


I12
r1
...

I1K
r1

+ λ


N12
r1

+ β12

...

N1K
r1

+ β1K

+


ε12

...

ε1K

 , (4.13)

where phase noise includes multipath.
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To reach the desired accuracy of absolute positioning, ultra-rapid satellite orbits and clock
offsets (predicted half) provided in a real time by the International GNSS Service are used. The
orbits provided have an accuracy of v5 cm, clocks have RMS of v3 ns and standard deviation of
v1.5 ns.

The multipath error affects the measurements differently for each satellite and frequency and its
estimation is in general not feasible due to singularity problems. However, multipath errors repeat
with the satellite geometry in case the receiver is stationary and its environment does not change.
The repeatability of multipath can be exploited at the reference stations equipped with geodetic
receivers, as it can be separated from all other error terms and estimated from the residuals. Aver-
aging the residuals over N epochs with equal satellite geometries is also called sidereal filtering
and yields the multipath estimate as given by [5]:

ôkr,m =
1

N

N∑
i=1

(
ρ̃ku,m(tn + i∆t)−∆ˆ̃gku(tn + i∆t)− q2

1m
ˆ̃Iku(tn + i∆t)

)
, (4.14)

where ∆t = 11 h 58 min for GPS is the time interval between two equal satellite geometries.
The estimates of the geometry terms ˆ̃gu and ionospheric delays ˆ̃Iku can be obtained from a Kalman
filter, that jointly processes code ρ̃ and phase λϕ̃measurements. In addition, the estimates the phase
biases and integer ambiguities as float numbers are obtained. For the low-cost systems multipath
estimation and elimination still remains a research problem.

The remaining main error sources are tropospheric and ionospheric delays, which are estimated
and mitigated as described in the following subsections.

4.2.1 Modeling of tropospheric delay using the MOPS model

We determine the tropospheric delay in two steps as described by Misra et al. [4]:

1. Estimation of the zenith delay T̂z in terms of corresponding hydrostatic (dry delay) T̂z,dry and
non-hydrostatic (wet delay) T̂z,wet terms, i.e.

T̂z = T̂z,dry + T̂z,wet (4.15)

Note that tropospheric zenith delay depends only on receiver’s location and are the same for all
satellites tracked.

2. Determination of mapping function, the obliquity factor to scale the zenith delay as a function
of elevation angle θ of the satellite. Final tropospheric delay is calculated as:

T̂r = T̂z,drymdry(θ) + T̂z,wetmwet(θ) (4.16)
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Estimation of tropospheric delays from GNSS data requires collection of observations during 1-2 h
and therefore cannot be used for kinematic applications. For geodetic applications, more accurate
but more complex tropospheric delay models, e.g. Sastamoinen, Hopfield [4], are used. As input
they require ground meteorological data, being their accuracy affected by the quality of these data.
In navigation applications such data is often not available, and estimation of tropospheric delays is
often based upon average meteorological conditions at user’s locations obtained from a model of
the standard atmosphere (so-called blind model) for the day-of-a-year (DOY) and corresponding
latitude and altitude. Comparison of different data-driven and blind models was performed by
Hornbostel and Hoque [25]. The result is shown in Fig. 4.3.

Figure 4.3: Comparison of different models for the tropospheric delay [25]

The Wide Area Augmentation System (WAAS) Minimum Operational Performance Standards
(MOPS) blind model for tropospheric delay was chosen as it is computationally simple, which
is important for real-time implementation, and delivers a relatively good accuracy with average
residual 1-σ error for tropospheric vertical delay estimate of 12 cm [26]. This model provides
estimates of the zenith tropospheric dry and wet delays for receiver’s latitude φ and day-of-a-
year D from the annual averages and associated seasonal variations of surface reference values
of five meteorological parameters - namely, pressure P , temperature T , temperature lapse rate
β, water vapor pressure e and water vapor lapse rate λ. They are derived primarily from North
American meteorological data and provided with 15° latitude resolution in a look-up table. For
receiver’s latitudes |φ| ≤ 15◦ and |φ| ≥ 75◦ the average ξ0 and seasonal variation ∆ξ values of
meteorological parameters are taken directly from the look-up table provided in [26]. For latitudes
15◦ < |φ| < 75◦ they are computed by linear interpolation between values of two closest latitudes
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φl and φl−1 in order to account for the strong north-south gradient of wet delay [27], i.e.

ξ0(φ) = ξ0(φl) + [ξ0(φl+1)− ξ0(φl)]
(φ− φl)

(φl+1 − φl)
(4.17)

∆ξ(φ) = ∆ξ(φl) + [∆ξ(φl+1)−∆ξ(φl)]
(φ− φl)

(φl+1 − φl)
(4.18)

Seasonal variation value is multiplied by a cosine function in order to account for harmonic sea-
sonal trend [27]. Thus, each of the five parameters ξ is calculated as follows:

ξ(φ,D) = ξ0(φ)−∆ξ(φ)cos

(
2π(D −Dmin)

365.25

)
, (4.19)

where Dmin = 28 for northern latitudes, Dmin = 211 for southern latitudes.

Zero-altitude zenith dry and wet delay terms are given by:

z0,dry =
10−6k1RdP

gm
(4.20)

z0,wet =
10−6k2Rde

gm(λ+ 1)− βRdT
, (4.21)

where k1 = 77,604 K/mbar and k2 = 382000 K2/mbar are refractivity constants, Rd = 287,054
J/kg/K is gas constant for dry air and gm = 9,784 m/s2 is acceleration of gravity at the atmospheric
column centroid.

Finally, a height reduction to the the receiver’s height H is performed:

zdry = (1− βH

T
)

g
Rdβ z0,dry (4.22)

zwet = (1− βH

T
)

(λ+1)g
Rdβ

−1
z0,wet, (4.23)

where g = 9.80665 m/s2 is surface acceleration of gravity and H is expressed in units of meters
above mean-sea-level.

Once zenith dry and wet delays at receiver’s altitude are determined, the mapping function of
Niell is applied to scale the zenith delay to the direction of observation. It does not require surface
meteorological data as input, but provides precision and accuracy comparable to others that require
such measurements. Katsougiannopoulos et al. [28] found out that its accuracy is at millimeter level
for elevations above above 30° and better than 2 cm for elevations above 20°.

Niell mapping function is based on three term continued fraction of sin(θ) satellite elevation
angle as described by Marini [29] and normalized to unity at zenith by Herring [30], i.e.

m(θ, a, b, c) =
1 + a

1+ b
1+c

sin(θ) + a
sin(θ)+ b

sin(θ)+c

(4.24)
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Niell hydrostatic mapping function mdry depends on the receiver’s latitude φ and height above the
mean-sea-level H (given in units of km), day-of-a-year D and satellite elevation angle θ and is
given by [31]:

mdry(θ,H) = m(θ, ah, bh, ch)−H(
1

sin(θ)
−m(θ, aht, bht, cht)) (4.25)

The hydrostatic coefficients ah, bh and ch are calculated according to Eq. (4.19), whereDmin = 28.
Coefficients average ξ0 and amplitude ∆ξ values for receiver’s latitudes 15◦ < |φ| < 75◦ are
linearly interpolated between values of two closest latitudes φl and φl−1 provided in the look-up
table as shown in Eq. (4.17) and Eq. (4.18). For the other latitudes these values, are taken directly
from the table. The height correction coefficients aht, bht and cht are constant over latitude and
provided in the same table.

Niell wet mapping function mwet depends only on the receiver’s latitude and satellite elevation
angle as follows [31]:

mwet(θ) = m(θ, aw, bw, cw) (4.26)

The wet coefficients aw, bw and cw are linearly interpolated between values of two closest latitudes
φl and φl−1 provided in the look-up table.

4.2.2 Estimation of a receiver position, carrier phase ambiguities and residual ionospheric
delays

Given measurements on at least two frequencies, ionospheric delays can be eliminated by forming
ionosphere-free combination or estimated. For the low-cost receivers, that provide measurements
only on one frequency, other methods have to be used. Assuming the single layer ionosphere
model, we estimate the ionospheric delays Îk using Klobuchar model [32] and correct the raw
measurements with obtained estimates. As the model can only correct 50-60% RMS of the iono-
spheric range delay in practice, we proceed by estimating the delays for each satellite along with
a 3-dimensional receiver position and single-difference ambiguities in order to achieve desired
decimeter-level absolute positioning accuracy. Therefore, there will be 3+2·(K − 1) independent
unknowns in a system of equations (4.13), that makes it under-determined. To avoid such a case,
carrier phase measurements from Nep multiple epochs are used. However, the residual ionospheric
delay for each satellite in this case would have to be estimated for each epoch. To avoid that, the
residual delay for each satellite k at the time tn is represented in terms of the residual zenith de-
lay ∆Ikz,r at the time t0 and corresponding gradient ∂

∂t
∆Ikz,r at the time tn, as well as elevation
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dependent mapping function mk
I :

∆Ikr (tn) =mk
I · (∆Ikz,r(t0) + (tn − t0) · ∂

∂t
∆Ikz,r)

=mk
I · (∆Ikz,r(t0) +∆t · ∂

∂t
∆Ikz,r) (4.27)

Assuming the constant residual ionospheric delay gradient for each satellite, there will be finally
3+3·(K−1) independent unknowns. Note that, as Günther specified in [7], the phase measurements
have to be sufficiently spaced in time to ensure linear independence. In order to limit the observa-
tion time needed to solve for the reference receiver position, we use more noisy but unambiguous
code measurements ρkr1 in addition. Taking into account outlined assumptions, the following sys-
tem of equations can be written for each epoch tn:

λϕ12
r1

+ (~e 12
r1

)T ~̂x12 + cδτ 12 − T̂ 12
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...

λϕ1K
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+ (~e 1K
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r1
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ρ1K
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)T ~̂x1K + cδτ 1K − T̂ 1K
r1
− Î1K
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DCB


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∂
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, (4.28)
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where the mapping function of the following form is used [7]:

mI(θ) =
1√

1− sin2ζ
(1+h/Re)2

(4.29)

with ionosphere reference height h=350 km above the Earth surface where all electrons are as-
sumed to be accumulated (single layer model), radius of the Earth Re= 6378.1 km and the zenith
angle ζ = θ − 90◦ (see Fig. 4.4).

Figure 4.4: Geometry of ionospheric propagation [7]

For single frequency users, the satellites broadcast in their navigation messages the Timing
Group Delay or Total Group Delay (TGD), which is proportional to the Differential Code Bias
(DCB), or interfrequency bias. The code measurements have to be corrected for the DCB to reach
decimiter level positioning accuracy. Among the navigation message, DCBs are also provided by
IGS centers. We use the DCBs provided for each satellite by Center for Orbit Determination in
Europe (CODE) on a monthly basis.

In this system of equations one column is linearly dependent on the others. Therefore it’s
not possible to solve for all zenith ionospheric delays and gradients independently using only
single-frequency measurements. To be able to still estimate the residuals delays, we combine the
residual zenith ionospheric delay ∆I2

z,r1
with the other delays as follows:
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
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

where MI,c =

(
MI,ϕ

MI,ρ

)
is the mapping matrix of the residual combined zenith ionospheric de-

lays. The same is valid for the corresponding gradients ∂
∂t
∆IKz,r1 . In addition, we introduce the

vector of single-difference measurements Ψ̃(tn) for every epoch tn:

Ψ̃(tn) =


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
(4.30)

However, the residual combined zenith ionospheric delays and gradients can be resolved only
using the observations sufficiently spaced in time. The soft constraints are imposed on the resid-
ual combined zenith ionospheric delays and corresponding gradients by setting their standard de-
viations to prior values. This allows us to improve the conditioning and reduce the observation
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time needed to estimate all unknown parameters. Therefore the system of equations (4.28) be-
comes: 
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, (4.31)

Introducing the vector single-difference measurements for all epochs Ψ̃ , of ambiguities N and
the mapping matrix A which maps the ambiguity to its measurement, residual combined zenith
ionospheric delays ∆I at time t0 and corresponding mapping matrix MI, residual combined zenith
ionospheric delay gradients ∆İ with mapping matrix Mİ, the geometry matrix Hgeo as well as the
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matrix of the measurement noise η we can further simplify the notation of Eq. (4.28) to

Ψ̃ = Hgeo~xr1 + AN +MI∆I +Mİ∆İ + η = Hξ + η, (4.32)

where

ξ =


~xr1

N

∆I

∆İ

 , H =
(
Hgeo A MI Mİ

)
,

A =
(
λ · 1Nep×(K−1) 0Nep×(K−1) 02·(K−1)×(K−1)

)T

,

MI =
(
MI,ϕ Nep×(K−1) MI,ρ Nep×(K−1) 1(K−1)×(K−1) 0(K−1)×(K−1)

)T

,

Mİ =
(
∆t ·MI,ϕ Nep×(K−1) ∆t ·MI,ρ Nep×(K−1) 0(K−1)×(K−1) 1(K−1)×(K−1)

)T

η ∼ N(0, Σ−1

Ψ̃
),

where the weighting matrix Σ−1

Ψ̃
that incorporates the knowledge about quality of our measure-

ments into solution is computed as an inverse of the covariance matrix given by:

Σ−1

Ψ̃
=


Σsd,ϕ(tn) 0 0 0

0 Σsd,ρ(tn) 0 0

0 0 ΣI 0

0 0 0 Σİ


−1

(4.33)

Estimation of 3-dimensional receiver position ~xr1 , single-difference ambiguities N , residual
combined zenith ionospheric ∆I delays as well as gradients ∆İ was performed by the means of
Kalman filter according to the Algorithm 2 using observations from multiple epochs in blocks of
size Nep, block. It is recursive least-squares estimator, which includes a prediction (state estimates
noted by x̂−n ) and an update step (state estimates noted by x̂+

n ) at each epoch. For the initialization
of the Kalman filter (Lines 3-4) the over-determined system of equations (4.28) is solved in least-
squares sense (see e.g. [4]), i.e.:

ξ̂ = min
~xr,N,∆I,∆İ

∥∥∥Ψ̃ −Hξ∥∥∥2

Σ−1

Ψ̃

(4.34)

according to procedure described in the Algorithm 1.

The Algorithm 1 uses the iterative Gauss-Newton method which requires the initialization of
unknown parameters. We initialize receiver position, ambiguities, residual combined zenith iono-
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spheric delays and corresponding gradients with zeros (Line 1 to Line 4). The number of epochs
Nep = 300 was chosen to allow the measurements to be sufficiently spaced in time in order to ensure
a better resolution of all unknowns. In Lines 8 and 9, mapping functions for ionospheric zenith
delays are calculated based on the estimated satellite elevation angles. The latter ones were ob-
tained with the least-squares single-epoch float solution. Total tropospheric delay for each satellite
is estimated in Line 10 according to Eq. (4.18) - (4.26). Total ionospheric delay for each satellite is
estimated in Line 11 according to Klobuchar model [32]. The code and phase residuals defined as
difference between measured and calculated pseudoranges are determined in Line 12 and Line 13.
The satellite-receiver unit-vectors are calculated in Line 14. Subsequently, single-difference code
and phase residuals are calculated in Line 19 and Line 20 as the differences between code and
phase residuals of reference satellite 1 and any other satellite k, as well as unknown parameters.
The single-difference residuals of the residual combined zenith ionospheric delays and gradients
are calculated in Line 23 and Line 24 assuming zero-value measurements. The calculated single-
difference residuals are then stacked in a vector (Line 26). In the similar manner, in Line 21
differential unit-vectors for the differential geometry matrix Hgeo are determined. The residuals
are then used to determine the receiver position, single-difference ambiguities, combined zenith
ionospheric delays and gradients (Line 27).

The residuals of the least-squares multi-epoch float solution are presented in Fig. 4.5 for code
measurements and Fig. 4.6 for phase measurements. The data set was collected at 11 a.m., that
corresponds to the rather active ionosphere. However, the increased number of satellites help us to
efficiently solve for all parameters in a reduced time period. The code residuals are in the order of
±2 m, that is accurate enough for initialization of Kalman filter and its faster convergence.
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Algorithm 1 Iterative least-squares float multi-epoch solution

Input: ρ(t), ϕ(t), ~xk(t), δτ k(t), θk(t), W, DOY, λ ∀k, ∀t
Output: ~xr1 , N, ∆I, ∆İ

1: ~x
(0)
r1 = 03×1 . Initialization of unknowns

2: N (0) = 0(K−1)×1

3: ∆I(0) = 0(K−1)×1

4: ∆İ(0) = 0(K−1)×1

5: for i = 1→ 5 do . Newton iterations

6: for t = 1→ Nep do
7: for k = 1→ K do
8: ζk(t) = θk(t)− 90◦ . Calculation of mapping functions of zenith ionospheric delays
9: mk

I (t) = 1√
1− sin2ζk(t)

(1+h/Re)2

10: T̂
k,(i)
r1 (t) = T̂z,dry(t)m

k
dry(t) + T̂z,wet(t)m

k
wet(t) . Estimation of tropospheric delays

11: Estimation of slant ionospheric delays Îk,(i)r1 (t) with Klobuchar model
. Calculation of code and phase residuals

12: r
k,(i)
r1,ρ (t) = ρkr1(t)− ‖~̂xk(t)− ~̂x(i−1)

r1 ‖+ cδτ k − T̂ k,(i)r1 (t)− Îk,(i)r1 (t)− bkDCB

13: rkr1,ϕ(t) = ϕkr1(t)− ‖~̂xk(t)− ~̂x(i−1)
r1 ‖+ cδτ k − T̂ k,(i)r1 (t) + Î

k,(i)
r1 (t)

14: ~e
k,(i)
r1 (t) =

~̂x
(i−1)
r1

−~̂xk(t)∥∥∥~̂x(i−1)
r1

−~̂xk(t)
∥∥∥ . Calculation of satellite-receiver unit-vectors

15: end for
16: end for

17: for t = 1→ Nep do
18: for k = 1→ (K − 1) do

. Calculation of SD code and phase residuals
19: r

1k,(i)
r1,ρ (t) = r

1,(i)
r1,ρ (t)− rk,(i)r1,ρ (t)−M2k

I,ρ(t)∆Î
k,(i)
r1 −M2k

İ,ρ
(t)∆ ˆ̇I

k,(i)
r1

20: r
1k,(i)
r1,ϕ (t) = r

1,(i)
r1,ϕ(t)− rk,(i)r1,ϕ (t)−M2k

I,ϕ(t)∆Î
k,(i)
r1 −M2k

İ,ϕ
(t)∆ ˆ̇I

k,(i)
r1 − λN1k,(i)

21: ~e
1k,(i)
r1 (t) = ~e

1,(i)
r1 (t)− ~e k,(i)r1 (t) . Calculation of differential unit-vectors

22: end for
. Calculation of SD residual combined zenith ionospheric delays and gradients residuals

23: r
1k,(i)
r1,I

= 0−∆Îk,(i)r1

24: r
1k,(i)

r1,İ
= 0−∆ ˆ̇I

k,(i)
r1

25: end for

26: r
(i)
sd =

(
r

1k,(i)
r1,ρ (t) r

1k,(i)
r1,ϕ (t) r

1k,(i)
r1,I

r
1k,(i)

r1,İ

)T

∀t, ∀k ∈ (1 : K − 1) . Residuals vector

27:


~̂x

(i)
r1

N̂
(i)
r1

∆Î
(i)
r1

∆ ˆ̇I
(i)
r1

 =


~̂x

(i−1)
r1

N̂
(i−1)
r1

∆Î
(i−1)
r1

∆ ˆ̇I
(i−1)
r1

+ (HTΣ−1

Ψ̃
H)−1HTΣ−1

Ψ̃
r

(i)
sd

28: end for
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Figure 4.5: Code residuals of floating least-squares estimation according to Alg. 1

Figure 4.6: Phase residuals of floating least-squares estimation according to Alg. 1
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After the initialization phase of the Algorithm 2, in Lines 6-7 the prediction of the state es-
timates x̂−n based on the state space model is calculated together with its covariance matrix ([5]).
Once the measurements of all block are available, they are corrected by the estimated tropospheric
and ionospheric zenith delays (Lines 10-12) and the single-difference code and phase measure-
ments are computed in Line 20 according to Eq. (2.3) and Eq. (2.5). In Line 21 the differential
unit-vectors are computed for the geometry matrix Hgeo In the way described in Algorithm 1. The
predicted state estimate is updated using these measurements to get x̂+

n in Lines 25-27. The covari-
ance matrix of observation noise Rn is computed according to the model in (4.33). The procedure
is repeated till the convergence of estimates is achieved. The size of measurement block Nep, block

was chosen as a trade-off between accuracy of estimates and the time needed to receive the next
state estimate, which is important for a real-time system.

Assuming the last estimate provided by Kalman filter as reference, the errors of the estimates
of receiver coordinates were calculated for three values of the standard deviation of the residual
combined zenith ionospheric delays σ∆I = 10 m, 1 m and 0.1 m (Fig. 4.7-4.9). Given that the
temporal variation of the ionospheric delay is 10 cm/min on the average [33], the standard deviation
for gradients σ ∂

∂t
∆I = 0.001 m was chosen. Analyzing the convergence behavior of the receiver

coordinates, σ∆I = 1 m was used for further analysis. The corresponding estimates of receiver
coordinates are presented in Fig. 4.10-4.12. The standard deviations of estimates were computed
over the periods 20 min and depicted in the form of error bars (two standard deviations). For all
coordinates they decrease with time, indicating the convergence. Y coordinate converges in 15 min
to the error of less than 30 cm, X coordinate of around 60 cm, and Z coordinate of around 3 m. The
ambiguities of 4 highest elevation satellites converges to the error of less than 1 cycle in 70 min
(Fig. 4.13). However, they still cannot be fixed to the floating values due to uncorrected satellite
biases.
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Algorithm 2 Estimation of 3-D receiver position, ambiguities, residual combined zenith iono-
spheric delays and gradients with Kalman filter

Input: ρ(t), ϕ(t), ~xk(t), δτ k(t), θk(t), W, DOY, λ ∀k, ∀t
Output: ~xr1 , N, ∆I, ∆İ

1: for n = 1→ Nblocks do
2: if n = 1 then
3: x̂+

n =
(
~xr1,n Nn ∆In ∆İn

)T

. Initialization of apriori information according to Alg. 1

4: Px̂+
n

= (HTΣ−1

Ψ̃
H)−1

5: else
6: x̂−n = Φn−1x̂

+
n−1

7: Px̂−n = Φn−1Px̂+
n−1
ΦT
n−1 +Qn . Computation of the state prediction and its covariance

matrix

8: for t = 1→ Nep, block do
9: for k = 1→ K do

10: Calculation of mapping functions of zenith ionospheric delays mk
I,n(t)

11: Estimation of tropospheric delays T̂ kr1,n(t)

12: Estimation of slant ionospheric delays with Klobuchar model Îkr1,n(t)

13: ~e kn (t) =
~̂x−r1,n−~̂x

k(t)

‖~̂x−r1,n−~̂xk(t)‖ . Calculation of satellite-receiver unit-vectors

. Calculation of corrected code and phase measurements
14: ρ̃kr1,n(t) = ρkr1(t)− ~e kn (t)~̂xk(t) + cδτ k − T̂ kr1,n(t)− Îkr1,n(t)− bkDCB

15: ϕ̃kr1,n(t) = ϕkr1(t)− ~e kn (t)~̂xk(t) + cδτ k − T̂ kr1,n(t) + Îkr1,n(t)
16: end for
17: end for

18: for t = 1→ Nep, block do
19: for k = 1→ (K − 1) do
20: Calculation of SD corrected code ρ̃1k

r1,n
(t) and phase ϕ̃1k

r1,n
(t) measurement

21: Calculation of differential unit-vectors ~e 1k
r1,n

(t)
22: end for
23: end for

. Observation vector
24: zsd,n =

(
ϕ1k
r1,n

(t) ρ1k
r1,n

(t) 02·(K−1)×1

)T

∀t ∈ (1 : Nep, block), ∀k ∈ (1 : K − 1)

25: Kn = Px̂−nH
T
n (HnPx̂−nH

T
n +Rn)−1 . Calculation of Kalman gain

26: x̂+
n = x̂−n +K(zn −Hnx̂

−
n )

27: Px̂+
n

= (1−KnHn)Px̂−n . Calculation of the state update and covariance matrix

28: end if
29: end for
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Figure 4.7: Error of the estimate of receiver X coordinate for different σ∆I

Figure 4.8: Error of the estimate of receiver Y coordinate for different σ∆I
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Figure 4.9: Error of the estimate of receiver Z coordinate for different σ∆I

Figure 4.10: Error of the estimate of receiver X coordinate assuming σ∆I=1 m
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Figure 4.11: Error of the estimate of receiver Y coordinate assuming σ∆I=1 m

Figure 4.12: Error of the estimate of receiver Z coordinate assuming σ∆I=1 m
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Figure 4.13: Error of the estimate of single-difference ambiguities assuming σ∆I=1 m

4.3 Corrections for single-difference code and phase measurements

Once absolute position of the first reference receiver r1 is determined, the sum of errors in form of
correction for single-difference carrier phase measurements between reference satellite 1 and any
other satellite k at the reference receiver r1 is calculated as follows [34]:

c1k
r1,ϕ

(t) = ϕ1k
r1

(t)−
(
~e 1
r1

(t)(~̂xr1 − ~̂x 1(t))− (~e kr1(t)(~̂xr1(t)− ~̂x k(t))
)

+ cδτ̂ 1k(t)

= ~e 1
r1

(t)(δ~xr1 − δ~x 1(t))− ~e kr1(t)(δ~xr1(t)− δ~x k(t))

−I1k
r1

(t) + T 1k
r1

(t) + λN1k
r1

+ β1k
ϕ (t) + ε1k

r1
(t) (4.35)

with single-difference carrier phase measurements ϕ1k
r1

of the reference receiver r1 determined ac-
cording to Eq. (2.5), unit-vector ~e 1

r1
(t) pointing from satellite 1 to reference receiver r1, estimation

of absolute position ~̂xr1 of reference receiver r1, estimation of absolute position ~̂x1 of satellite 1,
speed of light c, estimation of clock offsets difference δτ̂ 1k between satellites 1 and k, error of es-
timation of absolute position δ~xr1 of reference receiver r1, error of estimation of absolute position
δ~x 1 of satellite 1, difference of ionospheric delays I1k

r1
between satellites 1 and k in the direction

of reference receiver r1, difference of tropospheric delays T 1k
r1

between satellites 1 and k in the
direction of reference receiver r1, wavelength λ, carrier phase ambiguities difference N1k

r1
between

satellites 1 and k, difference of phase biases β1k
ϕ between satellites 1 and k and difference of phase

noise and multipath errors ε1k
r1

between satellites 1 and k at the reference receiver r1.
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The correction for single-difference code measurements between reference satellite 1 and any
other satellite k at the reference receiver r1 is given by:

c1k
r1,ρ

(t) = ρ1
r1

(t)−
(

(~e 1
r1

(t))T(~̂xr1 − ~̂x 1(t))− (~e kr1(t))T(~̂xr1(t)− ~̂x k(t))
)

+ cδτ̂ 1k(t)

= (~e 1
r1

(t))T(δ~xr1 − δ~x 1(t))− (~e kr1(t))T(δ~xr1(t)− δ~x k(t))

+I1k
r1

(t) + T 1k
r1

(t) + β1k
ρ (t) + η1k

r1
(t) (4.36)

with single-difference code measurements ϕ1k
r1

of the reference receiver r1 determined according to
Eq. (2.3), difference of code biases β1k

ρ between satellites 1 and k and difference of code noise and
multipath errors η1k

r1
between satellites 1 and k at the reference receiver r1 as additional terms.

The absolute position of reference receiver r2 is represented as a function of estimated absolute
position of reference receiver r1 and apriori baseline vector:

~̂xr2 = ~̂xr1 − ~̂br1,r2 (4.37)

The same applies to single-difference carrier phase ambiguities between satellites 1 and k at
the reference receiver r2, which can be represented as a function of single-difference carrier phase
ambiguities between the same satellites at the reference receiver r1 and apriori double-difference
phase ambiguities:

N̂1k
r2

= N̂1k
r1
− N̂1k

r1,r2
(4.38)

Apriori baseline vector ~̂br1,r2 and double-difference ambiguities N̂1k
r1,r2

were determined ac-
cording to the following algorithm:

• Computation of the double-difference code and phase measurements over at least 800 epochs;

• Determination of the floating least-squares solution for the baseline vector components and
double-difference ambiguities;

• Integer phase ambiguity search with the unconstrained LAMBDA method of Teunissen ([20]
and [19]);

• Fixing of the double-difference phase ambiguities and computation of fixed least-squares solu-
tion for the baseline vector components.

Taking into account Eq. (4.37) and Eq. (4.38), the correction for single-difference carrier phase
measurements ϕ1k

r2
at the reference receiver r2 is given by [34]:

c1k
r2,ϕ

(t) = ϕ1k
r2

(t)−
(
~e 1
r2

(t)(~̂xr2(t)− ~̂x 1(t))− ~e kr2(t)(~̂xr2(t)− ~̂x k(t))
)

+ cδτ̂ 1k(t) + λŇ1k
r1r2

= ~e 1
r2

(t)(δ~xr1(t)− δ~x 1(t))− ~e kr2(t)(δ~xr1(t)− δ~x k(t))

−I1k
r2

(t) + T 1k
r2

(t) + λN1k
r1

+ βklϕ (t) + ε1k
r2

(t) (4.39)
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The single-difference carrier phase corrections cr1,ϕ(t) and cr2,ϕ(t) show common location-
independent offsets λN1k

r1
and β1k

ϕ (t). It allows us to be able to estimate the double-difference
integer ambiguities between reference receiver r1 and user receiver as the final user receiver posi-
tioning step.

In the similar manner, the single-difference code correction is calculated, i.e.

c1k
r2,ρ

(t) = ρ1k
r2

(t)−
(
~e 1
r2

(t)(~̂xr2(t)− ~̂x 1(t))− ~e kr2(t)(~̂xr2(t)− ~̂x k(t))
)

+ cδτ̂ 1k(t)

= ~e 1
r2

(t)(δ~xr1(t)− δ~x 1(t))− ~e kr2(t)(δ~xr1(t)− δ~x k(t))

−I1k
r2

(t) + T 1k
r2

(t) + βklρ (t) + ε1k
r2

(t) (4.40)

The single-difference code corrections cr1,ρ(t) and cr2,ρ(t) show common location-independent
offset β1k

ρ (t).

The single-difference code and phase corrections calculated over the period of 30 min. from
the observations of the receiver r1 are presented in Fig. 4.14 and Fig. 4.15. Only the measurements
from the satellites with elevation over 20° are used as the ones less affected by cycle slips. The
corrections were calculated provided precise orbits from IGS to reduce the impact of orbital error.
For the plotting of phase correction, that includes single-difference ambiguities, the initial value
was subtracted to better see short-term variations. The code correction reaches as much as 20 m
for low elevation satellite (PRN 19). Due to the short baseline the code correction of the reference
receiver r2 is very similar in magnitude to corrections of r1, while phase correction is only different
by the integer number of cycles. Both show similar behavior over time.

Thus single-difference code and carrier phase corrections contain in addition to errors of satel-
lite and reference receiver positions estimation, as well as differences of atmospheric delays, the
location-independent errors. Therefore single-difference corrections for any location with latitude
φr and longitude λr at the epoch tn can be modeled as:

c1k
r (φr, λr, tn) = c1k

0 (t0) +
∂

∂t
c1k

0 · (tn − t0) +

(
∂

∂λ
c1k(t0) +

∂2

∂t∂λ
c1k · (tn − t0)

)
· (λr − λ0)

+

(
∂

∂φ
c1k(t0) +

∂2

∂t∂φ
c1k · (tn − t0)

)
· (φr − φ0) (4.41)

where c1k
0 (t0) is the offset from the location with longitude λ0 and latitude φ0 at the time t0,

∂
∂λ
c1k(t0) and ∂

∂φ
c1k(t0) are the spatial gradients at the time t0, ∂

∂t
c1k

0 is the time gradient of the
offset, ∂2

∂t∂λ
c1k and ∂2

∂t∂φ
c1k are the time gradients of the corresponding spatial gradients. Having

the measurements from three or more reference receivers over multiple epochs, the offset and the
gradients can be resolved.
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Figure 4.14: Correction for single-difference code measurements

Figure 4.15: Correction for single-difference phase measurements
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Single-difference corrections from N multiple epochs for R reference receivers can be written
in the matrix notation as:

c1k
r1

(λr1 , φr1 , t0)
...

c1k
rR

(λrR , φrR , t0)
...

c1k
r1

(λr1 , φr1 , tn)
...

c1k
rR

(λrR , φrR , tn)
...

c1k
r1

(λr1 , φr1 , tN)
...

c1k
rR

(λrR , φrR , tN)


︸ ︷︷ ︸

Ψ̃

=



H̃ (t0 − t0)H̃
...

...

H̃ (tn − t0)H̃
...

...

H̃ (tN − t0)H̃


︸ ︷︷ ︸

H̃geo



c1k
0 (t0)

∂
∂λ
c1k(t0)

∂
∂φ
c1k(t0)

∂
∂t
c1k

0

∂2

∂t∂λ
c1k

∂2

∂t∂φ
c1k


+



η1k
r1

(t0)
...

η1k
rR

(t0)
...

η1k
r1

(tn)
...

η1k
rR

(tn)
...

η1k
r1

(tN)
...

η1k
rR

(tN)



(4.42)

where the geometry matrix H̃geo is given by:

H̃geo =


1 λr1 − λ0 φr1 − φ0

...
...

...

1 λrR − λ0 φrR − φ0

 (4.43)

The offset and spatial gradients, as well as corresponding time gradients, are resolved by using
least-squares method: 

c1k
0 (t0)

∂
∂λ
c1k(t0)

∂
∂φ
c1k(t0)

∂
∂t
c1k

0

∂2

∂t∂λ
c1k

∂2

∂t∂φ
c1k


= (H̃T

geoWH̃geo)
−1H̃T

geoWΨ̃ (4.44)
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For the short baselines, it can be assumed that λrR ≈ λr0 and φrR ≈ φr0 . Thus Eq. (4.42) and
Eq. (4.44) can be simplified as follows:

c1k
r1

(λr1 , φr1 , t0)
...

c1k
rR

(λrR , φrR , t0)
...

c1k
r1

(λr1 , φr1 , tn)
...

c1k
rR

(λrR , φrR , tn)
...

c1k
r1

(λr1 , φr1 , tN)
...

c1k
rR

(λrR , φrR , tN)


︸ ︷︷ ︸

Ψ̃

=



1 (t0 − t0)
...

...

1 (t0 − t0)
...

...

1 (tn − t0)
...

...

1 (tn − t0)
...

...

1 (tN − t0)
...

...

1 (tN − t0)


︸ ︷︷ ︸

H̃geo

(
c1k

0 (t0)
∂
∂t
c1k

0

)
+



η1k
r1

(t0)
...

η1k
rR

(t0)
...

η1k
r1

(tn)
...

η1k
rR

(tn)
...

η1k
r1

(tN)
...

η1k
rR

(tN)



(4.45)

(
c1k

0 (t0)
∂
∂t
c1k

0

)
= (H̃T

geoWH̃geo)
−1H̃T

geoWΨ̃ (4.46)

On the short baselines, at least two reference receivers are necessary to perform interpolation.
For the weighting matrix W , the identity matrix was used, as all corrections are given with com-
parable accuracies. The interpolated code and carrier phase corrections are presented in Fig. 4.16
and Fig. 4.17.

4.4 Estimation of absolute position of a user receiver

The values of the gradients and offsets shall be used to correct single-difference code and carrier
phase measurements, and consequently determine the absolute position of the user receiver. First
single-difference code and carrier phase measurements between satellites 1 and k at the user re-
ceiver ru shall be computed according to Eq. (2.3) and Eq. (2.5). Then, the single-difference carrier
phase corrections shall be interpolated to the position of rover ru determined with the least-squares
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Figure 4.16: Interpolated correction for single-difference code measurements

Figure 4.17: Interpolated correction for single-difference phase measurements
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method. Finally, the corrections shall be applied as follows:

λϕ̂1k
u (t) = λϕ1k

u (t)− c1k
u,ϕ(λu, φu, t)

= λϕ1k
u (t)− ˆ̇c1k

λ,φ(t)λu(t)− ˆ̇c1k
φ,ϕ(t)φu(t)

≈ (~e 1
u (t)(~xu(t)− ~x 1(t)) + cδτ̂ 1k(t) + λ (N1k

u −N1k
r1

)︸ ︷︷ ︸
N1k
u,r1

+ε1k
u,r1

(t) (4.47)

For the code we obtain in the similar way:

ρ̂1k
u (t) = ρ1k

u (t)− c1k
u,ρ(λu, φu, t)

= ρ1k
u (t)− ˆ̇c1k

λ,ρ(t)λu(t)− ˆ̇c1k
φ,ρ(t)φu(t)

≈ (~e 1
u (t)(~xu(t)− ~x 1(t)) + cδτ̂ 1k(t) + η1k

u,r1
(t) (4.48)

From the corrected code and carrier phase measurements the absolute position of the user receiver
~̂xu(t) and double- difference carrier phase ambiguities N1k

u,r1
shall be determined by the Sequential

Best Integer-Equivariant Estimator [35]. Best Integer-Equivariant estimation method minimizes
the mean square error and is in this sense better than the widely used LAMBDA method. However,
it implies a complex ambiguity search and therefore comparatively rarely used.
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5. Conclusions

In this thesis, the capability of the Galileo system for precise relative and absolute positioning was
evaluated. In addition, the Virtual Reference Station concept for a network of low-cost receivers
was developed.

For the precise positioning with single- and multi-frequency receivers, errors such as code
tracking error as well as multipath remain the main limiting factors. However, the Galileo system
will provide the signals to overcome these shortcomings, as it was demonstrated in Chapter 3 by
processing the Galileo and GPS data with a few positioning algorithms. The code noise of Galileo
E5 signal was found to be in the range of 2 cm. The considerable improvement of the reliability of
widelane integer ambiguity resolution with the classical LAMBDA method was demonstrated. The
ratio of the squared measurement residuals reaches values of 100 for Galileo. Moreover, the higher
stability of the Galileo float ambiguity estimates in long-range RTK was demonstrated. In addition,
the improved accuracy of Galileo-based PPP was shown in terms of the fixed phase residuals of an
order of 1 cm compared to 4 cm of GPS. Once the Galileo system is fully operational, more test
campaigns involving a number of static, as well as dynamic receivers can be carried out to evaluate
its performance not only jointly, but also fully independent of GPS.

The Virtual Reference Station method, used in differential positioning to increase the distance
between user receiver and reference station without loss of final positioning accuracy, was adapted
for the system of low-cost GPS receivers in Chapter 4. The precise positioning of the reference
receiver, necessary to derive corrections, was successfully performed with decimeter level accu-
racy using a Kalman filter. To improve the conditioning and convergence of the estimates, the
ionospheric a priori information was added as a Gaussian distribution. The relative positioning of
the second reference receiver was performed with the classical unconstrained LAMBDA method of
Teunissen. Knowing the positions, the combined errors were determined from the single-difference
code and phase measurements of both receivers and interpolated according to the model described.
The algorithm of the user receiver position calculation using the derived corrections was proposed.
For the final validation of the developed absolute positioning concept based on corrected raw mea-
surements, the short and long-baseline test campaigns involving at least three static receivers as
well as a user receiver (static and dynamic) shall be carried out.
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AltBOC Alternate BOC modulation, constant envelope modulation scheme for combining two
Galileo signals E5a and E5b in order to generate broadband E5 signal

ANAVS Advanced Navigation Solutions - ANAVS GmbH

BOC Binary Offset Carrier modulation

BPSK Binary Phasen Shift Keying modulation

CBOC Composite Binary Offset Carrier modulation

CDMA Code Division Multiple Access

CODE Center for Orbit Determination in Europe

DD Double-difference

DCB Differential Code Bias
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DOY Day-of-a-year

ECEF Earth-Centered, Earth-Fixed coordinate frame

EGNOS European Geostationary Navigation Overlay Service

ENU East-North-Up coordinate frame

ESA European Space Agency

GPS Global Positioning System

IF Ionosphere-free

IGS International GNSS Service

LAMBDA Least-squares AMBiguity Decorrelation Adjustment

MEO Medium Earth Orbit

MOPS Minimum Operational Performance Standards

NL Narrowlane

OS Open Service

PAD Position and Attitude Determination

PPP Precise Point Positioning
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PRS Public Regulated Service

RTK Real-Time Kinematic

SD Single-difference

SoL Safety of Life

SSE Sum of Squared Errors

TUM Technische Universität München

VRS Virtual Reference Station

WAAS Wide Area Augmentation System

WL Widelane
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