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Abstract

A precise position and attitude information is essential for autonomous driving
of vehicles. Until today, many effort has been done to provide such a solu-
tion. The most common approach consists of a sensor fusion of GNSS (Global
Navigation Satellite System) and INS (Inertial Navigation System) techniques.

GNSS may provide accurate position information, but suffers from signal
reflection errors and from signal track losses in deep urban environments. INS
in contrast is totally independent from the environment but has a relatively bad
long-term accuracy. For this reason, the two approaches are often combined in
order to raise the strengths and get rid of the weaknesses of the two individual
techniques.

In this work, a Kalman Filter (KF) based tightly coupled position and at-
titude determination algorithm is developed for two low-cost GNSS receivers, a
gyroscope and an accelerometer. In addition, we perform real-time kinematics
(RTK) positioning using data from a virtual reference station (VRS) to augment
position accuracy.

We demonstrate that, in favorable conditions, we are able to determine the
relative position between using carrier phase measurements from two low-cost
GNSS receivers achieving centimeter level accuracy. In addition, the measure-
ment model of the inertial sensor was improved, enabling a heading angle es-
timation with an accuracy of less than one degree with a probability of 99,7%
(3σ).
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Chapter 1

Introduction

The concept of autonomous driving has become more and more a central topic
for the automobile industry. The recent developments in sensor fusion tech-
niques will open soon a market sector that could become very valuable. Apart
of laser beam imaging techniques for obstacle avoidance, a good part of the
research efforts are focusing on visual navigation techniques for positioning pur-
poses. However, the main drawback of visual navigation is the need of mapping
data for image georeferentiation. In this sense, the use of positioning techniques
that are independent from the environment like Global Navigation Satellite Sys-
tems (GNSSi) and Inertial Navigation Systems (INS) can offer a solution that is
robust to unpredictable modifications in the surroundings where the positioning
shall take place.

Nevertheless, using only one of the just mentioned navigation techniques
would not be sufficient to provide continuous and reliable position estimation.
Although GNSS may provide accurate position information, it suffers from re-
duced reliability and continuity issues in case of reduced sky visibility and/or in
case of high amount of signal reflectors. On the other hand, INS-based naviga-
tion lacks in long term accuracy but ensures high reliability and benefits from
being totally autonomous. For this reason, the two navigation techniques are
combined in order to raise the strengths and get rid of the weaknesses of the
two individual approaches.

In this thesis, a tightly coupled GNSS/INS position and attitude determi-
nation algorithm has been further developed. In particular, the research has
been focused on the inertial sensor’s mathematical model and on the candidate
evaluation of the GNSS double differenced carrier phase integer ambiguity fixing
algorithm.

The developed algorithm relies on an extended Kalman Filter (KF) and the
sensor coupling is performed on measurement level. The filter is updated using
the actual GNSS or INS measurement sample. The navigation related estimated
parameters are: position, velocity, acceleration, attitude and attitude rate of the
vehicle. Moreover, other non-navigational parameters like GNSS single differ-
enced code phase multipath error or INS angular rate and acceleration bias error
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are continuously estimated, too.
The measurements were taken using both GNSS and INS low-cost sensors.

The GNSS related measurements have been recorded using low-cost u-blox patch
antennas and single-frequency receivers, whereas the INS consists of a microelec-
tromechanical system (MEMS) inertial measurement unit (IMU). Both sensors
benefit from their low cost, weight and power consumption. However, they suf-
fer from various errors which are not negligible: GNSS patch antennas can suffer
from severe code phase and also carrier phase multipath errors, single-frequency
receivers may suffer from frequent carrier phase cycle slips and, in contrast to
dual-frequency receivers, are not able to eliminate atmospheric errors. In addi-
tion, the performance of MEMS IMUs degrades quickly over time, which may
induce large error during complete GNSS signal outages.

In order to perform precise attitude estimation, a dual antenna set-up has
been considered, where two GNSS antennas are mounted on the vehicle’s rooftop
to get an INS independent attitude estimation, which is also used to initialize
the inertial sensors. Furthermore, the absolute position accuracy is augmented
using a real time kinematics (RTK) approach, in which the vehicle is positioned
relatively to a virtual reference station (VRS). By knowing the position of the
VRS, the vehicle can be positioned absolutely, too. In the positioning algorithm,
we strongly rely on carrier phase positioning which, thanks to its low noise
characteristics, may enable centimeter-level positioning.

The rest of this work is organized as follows: in chapter 2, a brief introduction
on the essential navigation related mathematics is presented. Moreover, the
INS and GPS navigation techniques are briefly introduced in chapters 3 and 4,
respectively, whereas the sensor fusion algorithm, including the definition of our
mathematical models are outlined in chapter 5. Finally, the enhancements that
have been developed in this thesis are presented, together with the respective
results, in chapter 6.
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Chapter 2

Coordinate frame
parametrization

2.1 Coordinate frames

In order to describe the position and attitude of the vehicle, one has to define a
coordinate frame in which the values are referred to. In case of GPS a coordinate
frame which is earth ellipsoid referenced is usually chosen, whereas in case of
IMU and strapdown mechanization, a coordinate frame that is centered and
aligned with the sensor platform is considered. If one considers to perform a
coupling of both sensors, one has to choose a common reference coordinate frame
in which the estimate is finally outputted. In the following, a brief description of
the coordinate frames and their respective transformation techniques are briefly
presented. Throughout this section, we refer to [1, 2]

2.1.1 Earth-centered earth-fixed coordinate frame

The Earth-centered earth-fixed coordinate frame, depicted in Figure 2.1, is
where, in our model, we express the position, velocity and acceleration vec-
tor of the vehicle. This frame is mostly used in GPS, because of its convenient
definition. It’s an orthogonal right-handed coordinate frame which has its origin
fixed in the center of the ellipsoid on which the earth’s surface is modeled, and
it is earth-fixed: that means that it rotates with the earth itself on the same
rotation axis. The z-axis is so oriented to be along to the earth’s rotation axis
from the center to the Conventional Terrestrial Pole (CTP). The x-axis points
from the center to the intersection of the equator with the Greenwich meridian,
which defines the zero degree latitude. The y-axis completes the orthogonal set,
pointing from the equator to the intersection between the equator and the 90
degree east meridian.
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Figure 2.1: Illustration of the Earth-centered-Earth-fixed (ECEF) and East-
North-UP (ENU) coordinate frames

2.1.2 Navigation coordinate frame

The navigation coordinate frame, also called local navigation or local-level
frame, is always centered in the point for which the navigation solution is sought
for (i.e. the vehicle’s first GNSS antenna in our case). As can be seen in Fig-
ure 2.1, its orientation can be defined in several ways: If one takes the plane
that is tangent to the earth’s ellipsoid in the origin point, the y-axis is usually
defined as the projection of the line connecting the origin with the true north
pole on the just mentioned plane, whereas the x-axis is pointing, orthogonal to
the y-axis, in eastern direction, being always on the tangent plane. We assume
that the third axis is pointing upwards away from the ellipsoid center, orthog-
onal to both the x and y-axis, so to be normal to the x-y plane. In this case
the navigation frame is called East-North-Up (ENU) frame. If one swaps the
x and y-axis and inverts the direction of the z-axis, one comes to defined the
North-East-Down (NED) frame, that is also frequently used in navigation. We
preferred to adopt the latter convention, namely the NED one. This frame is
very useful for attitude determination because it remains fixed with the moving
object but keeps its axes orientated to the North and East direction, so that
one can easily recover the orientation of the vehicle with respect, for example,
to the North direction.
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Figure 2.2: Illustration of the body-fixed coordinate frame and main rotation
axes

2.1.3 Body-fixed coordinate frame

The body coordinate frame (Figure 2.2), called simply body frame, is usually
centered in a specific point of object for which one wants to estimate its position.
Its origin is so coincident to those of the navigation frame, but its orientation
remains fixed with the moving object. Usually, the three axes are aligned so
that the x-axis is oriented along the main movement direction of the vehicle,
so to point in the “forward” direction, the y-axis is orthogonal to the x-axis
pointing “right” and the z-axis is pointing “down”, being orthogonal to both
the x and the y-axis. Usually, the plane spanned by the x and y-axis is aligned
so to match the horizontal section of the vehicle. These axes often take the
name of roll (x-axis), pitch (y-axis) and yaw or heading axis (z-axis), and they
are also the axes on which the inertial sensors are aligned to.

2.2 Coordinate frame transformations

2.2.1 Attitude parametrization using Euler angles

There exist several ways to transform a vector’s coordinates from one coordinate
frame to another. In our solution, we rely on the Euler angles rotation matrices,
which rotate the vector consequently around each coordinate axes by angles that
are named Euler angles. In this transformation, neither scaling nor transposition
are taken into account, but only rotations are involved.

The Euler rotations are a predefined sequence of three rotations in a three
dimensional, Cartesian space. It is performed by successive application of the
three rotation matrices about specific axes. The rotation matrices are defined
as follows:
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Figure 2.3: Successive rotations about φ, θ and ψ respectively

R1(α) =

 1 0 0
0 cosα sinα
0 − sinα cosα

 ; R2(α) =

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 ; (2.1)

R3(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1


where Rj(α) represents the rotation about the j-th axis by the angle α. They

are orthogonal matrices, so R−1
j (α) = RT

j (α) = Rj(−α). It is important to de-
note that the specific order of the rotations has to be taken into account, because
the rotation operations are not commutative: R1(α)R2(β) 6= R2(β)R1(α). This
property can be clarified when considering the transformation of a vector, say
~x, from a certain t-frame to another s-frame:

~x s = R3(ψ)R2(θ)R1(ϕ)~x
t

The vector ~xt is first rotated around the (common) 1-axis, then rotated
around the (new!) 2-axis, and finally rotated around the (even newer!) 3-axis.
The successive rotation process is shown graphically in Figure 2.3. [3]

2.2.2 Transformation from the navigation frame to the
earth-centered earth-fixed frame

The transformation from the navigation frame to the earth-centered earth-fixed
frame (ECEF) is complicated by the fact that the two frames do not share the
same origin. For most of the applications, however, this is not an issue as one is
only interested on the relative orientation of the respective axes. The rotation
matrix that describes the transformation from the navigation to the ECEF frame
can be derived using Euler angles. First, rotate about the East-axis (y-axis) of
the North-East-Down navigation frame (NED) by the positive angle (right hand
rule) φ + π

2 , then rotate about the (new) Down axis (z-axis) by the negative
angle −λ:

6



φ
E’’’≡Y

D’’ D’’’

E’’≡E’

3

D’’

N’

N’’

D’≡D

θ

2

E

N

N’
ψ1

Figure 2.4: Graphical representation of the three successive rotations that in-
volve the navigation-to-body frame coordinate transformation

Ren = R3(−λ)R2(φ+
π

2
) (2.2)

where with (φ, λ) it is meant respectively the latitude and longitude in
radians of the origin of the considered navigation frame w.r.t. the earth-centered
earth-fixed frame.[2]

The rotation matrix becomes the notation Rts, where the subscript s is the
origin coordinate frame and the superscript t is the destination coordinate frame
for the rotation. In other words, Rts describes the rotation from the s-frame to
the t-frame. Due to the fact that Ren is a product of orthogonal matrices and
thus orthogonal itself, the inverse transform from the ECEF to the navigation
frame can be performed simply as:

Rne = (Ren)
−1 = R2(−φ− π

2
)R3(λ)

2.2.3 Transformation from the body frame to the naviga-
tion frame

The transformation from the body-fixed frame into the navigation frame can be
performed as usual by using the Euler attitude angles. In this case, the angles
are the bank (denoted by ϕ), elevation (denoted by θ), and heading (denoted by
ψ) angles. In our model, the heading angle is defined as the angle between the
North-axis of the NED navigation frame and the projection of the roll-axis or
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x-axis of the body frame into the North-East plane of the NED frame, whereas
the elevation angle is defined as the angle between the roll-axis or x-axis of the
body frame and its projection on the North-East plane of the NED frame.

By applying successive rotations and using Euler rotation matrices, to rotate
from the body to the navigation frame one has to first apply a rotation around
the x-axis by the negative angle −ϕ, then apply a rotation about the new y-axis
by the negative angle −θ, finally apply a third rotation around the even newer
z-axis by a negative angle of −ψ:

Rnb = R3(−ψ)R2(−θ)R1(−ϕ) (2.3)

Again, using the orthogonality property of the rotation matrix one can define
the inverse rotation as:

Rbn = (Rnb )
−1 = R1(ϕ)R2(θ)R3(ψ)

The latter rotation definition is also represented in Figure 2.4.

2.3 Time derivative of rotating quantities

The angular rate or angular velocity is the time derivative of an angle, in other
words it describes the “speed” of a rotation around a specific axis. When a
coordinate frame is rotating w.r.t. another coordinate frame, the formula that
describes how to properly transform a time derivative of a vector from one frame
into another is the so-called law of Coriolis:

Rts~̇x
s = ~̇x t + ~ω t

st × ~x t (2.4)

= ~̇x t +Ω t
st~x

t

where with ~ω t
st it is meant the angular velocity vector of the t-frame (second

subscript) w.r.t. the s-frame (first subscript) with coordinates that are given in
the t-frame (superscript). It describes around which axes the t-frame rotates
w.r.t. the s-frame. The second term on the right-hand side of equation 2.4 is the
additional displacement ~̇x is subject to because of the infinitesimal rotation of
the frame. It is to be noted that this term, for definition of the vector product,
is normal to the plane spanned both by the angular velocity vector ~ω t

st and the
vector ~x t, thus pointing in the direction of the rotation as “seen” by the t-frame.
The term [~ω t

st×] can be rewritten using the skew-symmetric representation of
vector ~ω t

st, namely Ω t
st, which is a skew-symmetric matrix defined by:

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


where ~ω = [ω1, ω2, ω3]

T
is the angular velocity vector.

Another way to express the Coriolis Law is with the following relationship:
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Ṙts = Ω t
tsR

t
s (2.5)

which can be easily derived from equation 2.4 and points out that the time
differential of rotation matrix Ṙts is completely defined by the skew-symmetric
matrix Ω t

st that contains the information on the relative rotation velocity be-
tween the two coordinate frames[1].

2.4 Transformation of the sensed angular rates
into the Euler attitude angles

The angular rate values sensed by the three gyroscopes can be expressed as an
angular velocity vector. As the gyroscopes are inertial sensors, they sense any
angular displacement that potentially can modify their inertia, say, even the
one caused by the orbiting of the earth around the sun. The correct definition
of their angular velocity vector should be done w.r.t an inertial frame, such as
a frame that obeys the well-known Isaac Newton’s laws of motion, in which a
body at rest stays at rest in the absence of applied forces. Thus, the angular
velocity vector of the sensed angular rates by the gyroscopes can be written as:

~ω b
ib = ~ω b

ie + ~ω b
en + ~ω b

nb (2.6)

thus decomposing it as the sum of three angular velocity vectors. In equation
2.6, the suffixes i, e, n and b stands for the inertial, ECEF, navigation and body
frame respectively. The first decomposition term includes the angular velocity
due to both the orbiting of the earth and the earth rotation itself, whereas
the second includes the rotations caused by the reorientation of the north, east
and down directions of the navigation frame as the vehicle travels along the
earth’s surface, whereas the third one describes the actual rotation between
the navigation and the body frame, which includes the quasi-totality of the
rotational dynamics.

Moreover, the angular velocity vector ~ω b
nb in equation 2.6 can be expressed,

using the Euler angles representation, as the sum of three vectors each repre-
senting the successive rotation around one specific axis:

~ω b
nb = ~ω b

nb2 + ~ω b
b2b1 + ~ω b

b1b (2.7)

= Rbb1R
b1
b2
~ω b2
nb2

+Rbb1~ω
b1
b2b1

+ ~ω b
b1b

where the coordinate frames b1 and b2 are the intermediate coordinate frames
that are considered when applying successive rotations. The three expressions
of the angular rotation vectors on the second equality of equation 2.7 describe
the actual angular rates that are sensed when being fixed w.r.t. one of the
intermediate coordinate frames. The rotation matrices Rbb1 and Rb1b2 describe a
rotation from one intermediate coordinate frame to another, thus representing
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R1 and R2, respectively, as defined in section 2.2.1. In this configuration, only
one component of the respective angular velocity vector is unequal to zero, as
the rotations are always performed around one of the canonical axes of the
intermediate coordinate frames:

~ω b
b1b =

 ϕ̇
0
0

 ; ~ω b1
b2b1

=

 0

θ̇
0

 ; ~ω b2
nb2

=

 0
0

ψ̇

 (2.8)

The angular rates (ϕ̇, θ̇, ψ̇) in equation 2.8 are nothing else but the time
derivative of the Euler angles defined in section 2.2.1. The solution of equation
2.7 for (ϕ, θ, ψ) involves so the solution of the following differential equation: ϕ̇

θ̇

ψ̇

 = REuler~ω
b
nb (2.9)

where

REuler =

 1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)

 (2.10)

is the so-defined Euler matrix which describes the nonlinear relationship
between ~ω b

nb and the time derivative of the Euler attitude angles. Integrating
differential equation 2.9 would result in finding the desired attitude angles[1].

2.5 Relative motion kinematics

If one has to describe the relative motion between two coordinate frames in
which one is not an inertial frame, that is a frame that does modify Newton’s
inertia during its observation, then one has to take particular attention when
time differentiating the position equations. A vector that describes the position
of a point particle w.r.t. an inertial frame can be written as:

~r i = Rib~r
b (2.11)

where ~rb is the position vector describing the same point but w.r.t another
coordinate frame, say, the body-fixed frame. Differentiating yields

~̇r i = Ṙib~r
b +Rib~̇r

b (2.12)

= Ω i
ibR

i
b~r
b +Rib~̇r

b

= Rib

(
~̇r b +Ω b

ib~r
b
)

(2.13)

where the second expression of equation 2.12 has been obtained by applying
the expression of Coriolis law of equation 2.5 and the third one with the relation
Ω i
ibR

i
b = RibΩ

b
ib. Differentiating again yields
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~̈r i = Ṙib~̇r
b + ṘibΩ

b
ib~r

b +Rib~̈r
b +RibΩ̇

b
ib~r

b +RibΩ
b
ib~̇r

b (2.14)

substituting again Ṙib as in equation 2.5 and rearranging terms yields

~̈r i = Rib

(
~̈r b + 2Ω b

ib~̇r
b + Ω̇ b

ib~r
b +Ω b

ibΩ
b
ib~r

b
)

(2.15)

where
~̈r b is the acceleration of the point particle in the body-fixed frame

2Ω b
ib~̇r

b is the Coriolis acceleration

Ω̇ b
ib~r

b is the tangential acceleration
Ω b
ibΩ

b
ib~r

b is the centripetal acceleration
Equation 2.15 describes the acceleration of a point particle expressed into a

non-inertial coordinate frame, as for example here the body-fixed frame.[2]
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Chapter 3

The Inertial Navigation
System

The Inertial Navigation System (INS) is a form of Dead Reckoning (DR) navi-
gation system that doesn’t rely on external reference, but works “on it’s own”,
therefore is called an autonomous system. It is able to provide information
about position, velocity and attitude from measurements taken from an inertial
sensor and based on DR principles. Given specific initial conditions, the system
is able to provide the vehicle’s attitude by integrating the angular rate measure-
ments once and their absolute position by double integration of the acceleration
measurements.[2]

3.1 The inertial measurement unit (IMU)

The inertial measurement unit (IMU) consists of a set of three accelerometers,
arranged on three orthogonal axes, and a set of three gyroscopes, also aligned
with the same reference axes. The platform on which the sensors are mounted
can be stabilized by a set of gimbals and servo motors (so-called gimbalized or
stabilized mechanization), which is often very expensive but also very accurate,
or firmly attached on the vehicle (so-called strapdown mechanization), which is
much less expensive, very robust but less accurate.

The main drawback of such a navigation system is the presence of unpre-
dictable and variable offset errors in their measurements, the so-called measure-
ment biases. The main focus on research is based on finding an appropriate
model for such errors, so to be able to estimate and correct for them.

The fundamental difference between gimbalized and strapdown IMUs is on
the significance of the biases: the former is able to substantially reduce the
errors thanks to the gimbalized structure that permits the platform to remain
aligned with the local North, East and Down coordinate frame; whereas the
latter, whose is firmly attached onto the mounting platform, suffers from all
dynamics and vibrations from the object where it is mounted on. We preferred
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the second approach mainly for economical reasons, but also because of the
increased robustness and nearly unnecessary maintenance.[1]

3.1.1 Movement model

IMU-based positioning relies simply on the integration of inertial sensed acceler-
ations, and thus mathematically involves the solution of a differential equation,
which in practice is solved by numerical integration. The differential equation
is the following so-called navigation equation:

~̈x = ~g(~x) + ~a (3.1)

where ~x is the position vector, ~g(~x) the gravity acceleration vector, which in
general is position-dependent, and ~a the superposition of all external accelera-
tions that are sensed by the accelerometers. This navigation equation should be
then expressed in the local frame defined by the orientation of the accelerome-
ters w.r.t. the platform on which they are mounted on, and then transformed
to the right navigation frame in order to be able to extrapolate the absolute
position and attitude of the vehicle in the desired frame.

The numerical integration is performed after a linear approximation of the
differential equation and, as the integration time is very short (about 0.01 sec-
onds), this approach should be sufficiently accurate for our purposes. For the
absolute position determination, this can be modeled simply by the following
equations:

~xn+1 = ~xn +∆t · ~vn +
∆t2

2
~an + ηx, n+1 (3.2)

~vn+1 = ~vn +∆t · ~an + ηv, n+1 (3.3)

~an+1 = ~an + ηa, n+1 (3.4)

where n is the sample index, ∆t the integration time, and ~v = ~̇x, ~̇v = ~a. All
terms are subject to white Gaussian noise, which is represented by η.

Following the same approach for the attitude determination, the Euler atti-
tude angles (heading, elevation and bank) can be obtained by:

ψn+1 = ψn +∆t · ψ̇n + ηψ, n+1 (3.5)

θn+1 = θn +∆t · θ̇k + ηθ, n+1 (3.6)

ϕn+1 = ϕn +∆t · ϕ̇n + ηρ, n+1 (3.7)

where ψ, θ, φ are respectively the heading, bank and elevation angles, whereas
ψ̇, θ̇, φ̇ represent their time derivatives, namely the heading, elevation and bank
rate. It has to be noted that the latter do not represent the values sensed by the
gyroscopes in our model, but are derivative of Euler angles. The Euler angles
represents respectively the three successive rotations that describe the orienta-
tion of the vehicle w.r.t. a specific coordinate frame, as pointed out in section
2.4. The η term stands, as before, for Gaussian noise.
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3.1.2 Measurement model

The measurements performed by the IMU includes both the acceleration mea-
surements performed by the accelerometers and the angular rate measurements
performed by the gyroscopes. As mentioned before, the inertial measurement
units suffer mainly from bias errors, which unfortunately sum up when per-
forming numerical integration. For this reason, it is necessary to model this
drift by adding a certain measurement bias to the true value, which then should
be estimated with the help of GPS-based measurements, that are known to
be bias-free. In addition, for the acceleration vector estimation, it should be
noted that the accelerometers sense both the external accelerations withstood
by the vehicle and the acceleration due to the gravity field. For this reason, it
is necessary to subtract the gravity vector from the acceleration measurement.

The acceleration measurements are modeled as:

~f = ~a− ~g(~x) +~ba + ηã (3.8)

in which ~f represents the measured accelerations (also called specific force

vector) and ~ba the acceleration bias vector, given respectively in the three body-
frame axes. ηã is modeled as Gaussian noise. The gravity vector is projected
along the body-frame axes as:

~g(~x) = g(~x) ·

 − sin(θ(~x))
cos(θ(~x)) sin(ϕ(~x))
cos(θ(~x)) cos(ϕ(~x))

 (3.9)

in which g(~x) is the absolute position dependent local gravity acceleration
magnitude that is projected into the three components of the body coordinate
frame using the value of the elevation and bank angles.

The measurements coming from the gyroscopes measure the angular rates
around the three axes of the frame on which they are mounted on, and can be
modeled as:

~̃ωbib =

 ω̃X
ω̃Y
ω̃Z

 =

 ωX + bωX
+ ηωX

ωX + bωX
+ ηωX

ωX + bωX
+ ηωX

 (3.10)

where the values with a tilde (˜) represent the measured quantities, b stands
for the bias error and η is modeled as Gaussian noise.

As said in section 2.4, the just mentioned angular rate vector can be split in
several angular rates

~ω b
ib = ~ω b

ie + ~ω b
en + ~ω b

nb

= ~ω b
ie + ~ω b

en + (REuler)
−1

 ϕ̇

θ̇

ψ̇


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where in the second expression of the above equation, the relationship of
equation 2.9 has been used.

3.2 INS Mechanization

The process of INS Mechanization consists of converting the sensor’s input into
useful navigation parameters, e.g. into the position, velocity and attitude in-
formation of the moving object, given into a specific coordinate frame. The
mechanization process starts with specific initial values as input and proceeds
iterating over the sensor’s output samples.

3.2.1 INSMechanization in the Earth-centered Earth-fixed
frame

In our sensor fusion model, we chose to perform INS mechanization into the
Earth-centered Earth-fixed (ECEF) frame, because our estimated parameters
in our Kalman-Filter approach (see section 5.2.1) are given in this coordinate
frame.

The output of an accelerometer, called also specific force vector, can be
modeled as:

~f i = ~a i − ~̄g i (3.11)

where ~ai is the acceleration of the body, and ~̄g i is called the gravitational
vector, which models the gravitational field of the body positioned in ~r i w.r.t.
an inertial frame. All coordinates are given in the inertial frame i.

By substituting ~a i with the expression of ~̈r i from equation 2.15 and by
applying a rotation Rei from the inertial to the ECEF frame, we obtain

~f i + ~̄g i = Rie

(
~̈r e + 2Ω e

ie~̇r
e + Ω̇ e

ie~r
e +Ω e

ieΩ
e
ie~r

e
)

(3.12)

where, without loss of generality, we have simply substituted the index of
the target coordinate frame from b to e, as we mean now the ECEF frame.

Now, as the earth rotation rate is approximately constant, we can assume
that Ω̇ e

ie = 0. Moreover, the gravitational field in the ECEF frame can be
expressed as

Rei ~̄g
i = ~ge +Ω e

ieΩ
e
ie~r

e

as the gravitational vector ~̄g i, once rotated into the ECEF frame, is subject
to the earth rotation.

By taking into account what has been just pointed out, equation 3.12 can
be rewritten as:

~f i = Rie

(
~̈r e + 2Ω e

ie~̇r
e − ~g e

)
(3.13)

Solving for ~̈r e yields:
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~̈r e = Reb
~f b − 2Ω e

ie~̇r
e + ~g e (3.14)

which is the expression of the acceleration of the body with coordinates given
in the ECEF frame.

Furthermore, the Coriolis law from equation 2.5, can be rewritten for the
ECEF frame as

Ṙeb = RebΩ
b
eb (3.15)

By noting that Ω b
ib = Ω b

ie +Ω b
eb the above equation can be rewritten as

Ṙeb = Reb
(
Ω b
ib − Ω b

ie

)
(3.16)

which gives us an expression of the body’s angular rate in the desired ECEF
frame. [2]
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Chapter 4

The Global Positioning
System

The Global Positioning System (GPS) is the most common and powerful out-
door navigation system. Developed by the US Department of Defense (DoD)
in the 1970s, it was once thought for military purposes. It became fully opera-
tional in 1995, but until 2000 the signal for civil use was artificially degraded so
that only the military could benefit of the maximum performance. Until now,
many enhancements have been developed to improve position accuracy: new
signals have been developed with improved accuracy and many satellite-based
and ground-based augmentation systems (SBAS and GBAS, respectively) have
been developed to provide the user with correction data to reduce atmospheric,
orbital and satellite clock errors and to enhance the system’s integrity.

But GPS isn’t the only operative Global Navigation Satellite System (GNSS).
At time of writing, many more of these systems are being developed: The
Russian Global Navigation System (GLONASS), developed by the Russian
Aerospace Defense Forces, is the main alternative to GPS. Being developed
since the late 1980s, it has reached global coverage in 2011, but since then is still
under development. Recently, more and more commercial GNSS receivers are
including the capability of decoding GLONASS signals, too. Moreover, the Eu-
ropean Space Agency (ESA), together with the European Union (EU) has been
developing its own GNSS project called Galileo. Unlike GPS and GLONASS,
Galileo has been developed with the aim to provide a high-precision signal that
will enable a very reliable integer Ambiguity Resolution (AR), providing the
user with a centimeter-level accuracy. Unfortunately, Galileo satellite constel-
lation is still incomplete, the total constellation of 24 satellites will be reached
only in 2020 [4].

The growing number of GNSS systems will provide a much better mea-
surement availability, more robustness, and could finally enable reliable integer
Ambiguity Resolution (AR) to substantially improve accuracy of RTK and PPP
solutions.[5, 6]
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4.1 Measurement models

In the following, the models for the GPS pseudorange, carrier phase and Doppler
measurements shall be outlined. We note that in our implementation, we
strongly rely on GPS carrier phase measurement for maximizing positioning
accuracy possibly up to centimeter level. This requires correct resolution of
the integer ambiguities, topic that will be briefly discussed in section 4.4. Al-
though this has been developed using only signals coming from GPS satellites,
the extension of the subsequent model on Galileo or GLONASS measurements
is theoretically immediate, because the latter GNSS systems rely on equivalent
measurement models.

In the following, basic knowledge of GNSS measurements is required. This
topic is treated exhaustively in [5] and in [7].

4.1.1 The pseudorange measurement

For the GPS pseudorange measurement, the following model is assumed:

ρkr =
(
~e kr
)T (

~rr − ~r k
)
+ c(δr − δk) + Ikr + T kr +4ρMP

k
r + ηkr (4.1)

where, apart from navigation parameters described in Appendix A.3, with
4ρMP

k
r it is meant the code phase multipath error.

4.1.2 The carrier phase measurement

For the GPS carrier phase measurement, the following model is assumed:

λφkr =
(
~e kr
)T (

~rr − ~r k
)
+c(δr−δk)−Ikr +T kr +λNk

r +4ϕMP
k
r+βr+β

k+εkr (4.2)

where, apart from navigation parameters described in Appendix A.3, with
4φMP

k
r it is meant the carrier phase multipath error, whereas the receiver and

satellite biases are denoted by βr and βk, respectively.

4.1.3 The Doppler frequency measurement

For the GPS Doppler frequency measurement, the following model is assumed:

fd = fR − fT

= −fT
c

(
(~ekr )

T(~vr − ~v k) + c(δ̇r − δ̇k)− İkr + Ṫ kr +
∂

∂t
4φMP

k
r + ηdkr

)
(4.3)

where fR and fT are the frequencies of the received and transmitted carrier
signal, respectively, ~vr and ~v k describe the user and satellite velocity vector,
whereas δ̇k and δ̇r represent the time derivative of the satellite and user clock
errors. The time variability of the other error terms is smaller than the mea-
surement noise, and so the quantities İkr , Ṫ

k
r and ∂

∂t4ρMP
k
r can be neglected.

The noise term ηdkr is modeled as Gaussian noise.
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4.2 Single and double differences

The main advantage in taking differences between measurements is to eliminate
common sources of error. Taking equations 4.1 and 4.2 as reference, the single,
satellite-to-satellite difference of both the code and the carrier phase can be
modeled as:

ρklr = ρkr − ρlr

= (~e kr − ~e lr )
T · ~rr − (~e kr )

T · ~r k + (~e lr )
T · ~r l . . .

−c(δk − δl) + Iklr + T klr +4ρMP
kl
r + ηklr (4.4)

λφklr = λ(φkr − φlr)

= (~e klr )T · ~rr − (~e kr )
T · ~r k + (~e lr )

T · ~r l − c(δk − δl) . . .

−Iklr + T klr + λNkl
r +4ϕMP

kl
r + βkl + εklr (4.5)

The latter satellite index l is referred the reference satellite, mostly chosen to
be the one with the highest elevation angle. In this case, the common receiver
clock error cδr and the common receiver bias βr in the carrier phase equation
cancel out.

This single differences can be also calculated on a second receiver and used
to build up double differences, this is done by taking the difference of single-
difference measurements coming from two different receivers and having the
same satellite indexes kl. It can be modeled as:

ρkl12 = ρkl1 − ρkl2

= (~e kl1 )T · ~r1 − (~e kl2 )T · ~r2 − (~e k1 − ~e k2 )T · ~r k . . .
+(~e l1 − ~e l2 )

T · ~r l + Ikl12 + T kl12 +4ρMP
kl
12 + ηkl12 (4.6)

λφkl12 = λ(φkl1 − φkl2 ) =

= (~e kl1 )T · ~r1 − (~e kl2 )T · ~r2 − (~e k1 − ~e k2 )T · ~r k . . .
+(~e l1 − ~e l2 )

T · ~r l − Ikl12 + T kl12 + λNkl
12 +4φMP

kl
12 + εkl12 (4.7)

By taking these differences, the satellite clock errors are the same on both
receiver 1 and 2 and thus cancel out. In addition, the residual atmospheric
differential errors Ikl12 and T kl12 are typically much smaller than the absolute
delays, as long as the distance from the two receivers is not too large (up to a
few kilometers) [5].
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4.3 Clock synchronization corrections

The measurement model for double differences described in section 4.2 does
not exploit the lack of synchronicity between different receivers. If using com-
patible receivers, the temporal synchronicity can be achieved using a common
oscillator[8]. However, if using low-cost GNSS receivers, this has to be back-
corrected in software in form of a synchronization correction term as:

ckl12 = −
{[
~e k2 (t)

]T [
~r2(t)− ~r k(t)

]
−
[
~e l2 (t)

]T [
~r2(t)− ~r l(t)

]}
t=tn+δt2

. . .(4.8)

+

{[
~e k1 (t)

]T [
~r2(t)− ~r k(t)

]
−
[
~e l1 (t)

]T [
~r2(t)− ~r l(t)

]}
t=tn+δt1

in which the time dependency of the e-vectors and the range vectors has
been exploited. The time tn refers to the reference time, namely the GPS-time,
whereas the time difference δtr refers to the difference between the reference
time and the time of measurement of the receiver r [9].

4.4 Integer ambiguity resolution

The accuracy of the position estimation can be improved by exploiting the
integer nature of the whole cycles of the carrier phase measurement. Its correct
estimation is one of the most discussed topics in Precise Point Positioning (PPP)
and Real Time Kinematics (RTK) approaches.

Without entering into details, the core of the problem is to minimize the
following quantity:

argmin
ξ∈R3, N∈ZK

‖Ψ−Hξ −AN‖2Q−1
Ψ

(4.9)

having with

Ψ =

[
ρ 1,K
12 . . . ρK−1,K

12

λφ 1,K
12 . . . λφK−1,K

12

]T
the pseudorange and carrier phase double differenced synchronized measure-

ments; with

ξ = ~b12

the baseline vector; and with

H =

[
1
1

]
⊗
[
~e 1,K
1 , . . . , ~e 1−K,K

1

]T
and

20



A = λ

[
0(K−1)×(K−1)

1(K−1)×(K−1)

]
the matrices describing the geometry for the unknown baseline vector ξ and

integer ambiguity vector N , respectively. The minimization has to be performed
with a metrics described by the inverse of the measurement covariance matrix
Q−1

Ψ .
The norm can be decomposed by applying the orthogonal projector on the

space of H, namely P⊥
H , to the minimization term in equation 4.9. A real-valued

estimation of the integer ambiguities can then be performed by

N̂ = argmin
N∈RK

∥∥P⊥
H (Ψ−AN)

∥∥2
Q−1

Ψ

(4.10)

and the float estimation can be used to select the “best” integer candidate
as

N̆ = argmin
N∈ZK

∥∥∥N̂ −N
∥∥∥2
Q−1

N

(4.11)

having with

Q−1
N =

(
P⊥
HA
)T
Q−1

Ψ P⊥
HA

the inverse of the float ambiguities covariance matrix.
The optimal integer candidate vector N̆ can be found by applying a decorre-

lation algorithm, the Least-Squares Ambiguity Decorrelation Adjustment (LAMBDA).
This procedure aims on decorrelating the least-squares ambiguities N̆ based on
the metrics given by the covariance matrix QN and by exploiting the integer
nature of the candidates. Without entering into details, the procedure aims to
find the best linear transformation that both diagonalizes the metrics described
by Q−1

N in order to minimize the correlations induced by measurement differ-
entiation and that avoids the distortion of the transformed space in order to
preserve the integer nature of the candidates. The goal is to find an integer
valued, grid-preserving transformation Z given by

Q̃N = ZQNZ
T (4.12)

in which Z is integer valued and Q̃N is as diagonal as possible. Such type
of diagonalization may be obtained from a Cholesky triangular decomposition
in which the off-diagonal elements of the triangular matrices are forced to be
integer valued. Once that Q̃N is found, and assuming that it is approximately
diagonal, the minimization term in equation 4.11, once transformed according
to equation 4.12, may be rewritten as

∥∥∥N̂ − Ñ
∥∥∥2
Q̃−1

N

=

K∑
k=1

(
Ñk − N̂k|1, ..., k−1

)2
σ2
N̂k|1, ..., k−1

(4.13)
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in which Ñk is the k-th transformed integer ambiguity and N̂k|1, ..., k−1 de-
notes the k-th transformed float ambiguity estimate given that the ambiguities
Ñ1, . . . Ñk−1 have been already fixed to an integer value. Minimizing the float
ambiguity residuals in equation 4.13 equals to find integer candidates Ñk such
that

K∑
k=1

(
Ñk − N̂k|1, ..., k−1

)2
σ2
N̂k|1, ..., k−1

≤ χ2 (4.14)

in which χ2 ∈ R is chosen according to the float solution. Isolating the k-th
term from the summation in equation 4.14 yields:

(
Ñk − N̂k|1, ..., k−1

)2
σ2
N̂k|1, ..., k−1

≤ χ2 −
K∑

l=1, l 6=k

(
Ñ l − N̂ l|1, ..., l−1

)2
σ2
N̂k|1, ..., l−1

(4.15)

The terms of the summation on the right hand side of equation 4.15 are all
positive definite and this enables to rewrite the inequality as(

Ñk − N̂k|1, ..., k−1
)2

σ2
N̂k|1, ..., k−1

≤ χ2 −
k−1∑
l=1

(
Ñ l − N̂ l|1, ..., l−1

)2
σ2
N̂k|1, ..., l−1

(4.16)

without altering its validity. Equation 4.16 may suggest a tree-search based
recursive algorithm that is initialized with possible integer candidates for Ñ1 and
is repeated recursively for the other candidates based on the initial supposition of
the first fixed candidate. By doing so, for every supposed k-th integer candidate
Ñk, an equivalent integer fixing algorithm with reduced number of candidates
(namely K − k − 1) can be performed.

A more exhaustive treatment of this topic can be found in [10]. For more
insight on LAMBDA we refer to [11].
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Chapter 5

Sensor Fusion: The
extended Kalman Filter

By observing the pros and cons of referenced positioning and dead reckoning
respectively, it has been observed that they are complementary: while GNSS-
based positioning has a good long term accuracy and its errors are bounded
to a few meters, on the other hand it has a relatively bad short-time accuracy,
is dependent on the environment and provides a low data output rate. For
INS-based positioning instead, the picture is mainly the opposite: it has a good
short-time accuracy, is totally independent from the environment, provides high
data output rate but suffers of a bad long-time accuracy due to the intrinsic
integration in the computation algorithm.

In the past years, since the mass market lowered the price of both INS
and GNSS sensors, such an integration became more and more interesting also
because of a feasible probability of being commercialized.

To cite only a few, C. Hide and T. Moore [12] came up in 2005 with a
tightly coupled GPS/INS solution using a low-cost Crossbow MEMS IMU and
a Novatel GPS receiver. They performed sensor fusion at measurement level
with a standard Kalman Filter having 3D IMU angular rate and acceleration
measurements and the GPS ground differential pseudorange (they used a Leica
GPS static receiver as reference receiver) and Doppler measurements as input.
In addition, they performed Kalman Filter smoothing in post-processing to
reduce the standard deviation of the errors. The results showed that they were
able to bound the errors up to a few meters even in deep urban conditions with
poor satellite visibility. The KF smoothing enabled to further reduce the error
peaks.

Y. Li and others [13] presented in 2006 another tightly coupled GPS/INS
solution using low-cost sensors and antennas. For the sensor fusion algorithm,
they implemented a Sigma-Point Kalman Filter (SPKF), which has the advan-
tage to better model the nonlinearities of a standard Extended Kalman Filter
(EKF) approach by taking into account not only the first but also the second
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moment in the linearization process. They used, as usual, IMU 3D angular
rate and acceleration measurements as well as GPS satellite single-difference
pseudorange and Doppler measurements. As for the results, they point out
that the SPKF does not give noticeable better results than a standard EKF
approach, possibly because the nonlinearities are not large enough to leverage
the improved linear approximation of the SPKF.

To conclude our citations, J. Georgy and others [14] designed in 2010 a
slightly different approach using a Reduced Inertial Sensor System (RISS) in-
stead of a full-IMU approach. They proposed a GPS/INS sensor fusion us-
ing only the Z-axis gyroscope measurement, the X- and Y-axis accelerometer
measurements and the GPS undifferentiated pseudorange and Doppler mea-
surements driven by an enhanced Particle Filter (PF) called Mixture PF. In
addition, they used the wheel sensor on the car to aid the filter with speed
information, too. The main advantage of using RISS instead of full IMU re-
lies, in their opinion, in being able to extract the elevation and bank attitude
angles directly from the acceleration measurements by adopting a suitable grav-
itational model. This in turn avoids suffering from third order position errors
that otherwise would be induced by the necessary integration of the gyroscope
measurements. Results have been compared with a usual INS/GPS approach
and have shown a better performance in term of position accuracy.

In the following, our model for a EKF INS/GPS tight coupling is presented.
We shall note that, in contrast to the just outlined methods we strongly rely
on carrier phase positioning and on measurement differentiation. This has the
drawback that the integer ambiguities have to be correctly resolved, and this
isn’t a trivial task, but has the strong advantage of the substantially reduced
noise level and multipath errors of the carrier phase measurements.

From now on, the reader is advised on basic Bayesian estimation and Kalman
Filter knowledge, otherwise we propose [15] and [2] as references for this topic.

5.1 Sensor set-up

Figure 5.1 shows our set-up for the tightly coupled RTK position and attitude
determination. The GNSS antennas 1 and 2 are firmly attached onto the car
rooftop, whereas the third one is assumed as static and its position as known.
The IMU is also mounted inside the car and its reference axes are aligned with
the car longitudinal, lateral and vertical axes.

For every epoch, we estimate both the RTK and the attitude baseline, the
former being defined as a function of the absolute positions ~x1 and ~x3:

~b13 (~x1, ~x3) = ~x1 − ~x3

and the latter being defined as a function of Euler attitude angles:

~b12 (ψ, θ) =
∥∥∥~b12∥∥∥

 cos(θ) cos(ψ)
cos(θ) sin(ψ)

− sin(θ)


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Figure 5.1: GNSS and inertial sensor set-up

It should be noted that the absolute position ~x3 of the reference GNSS
antenna is static and known and the norm ‖ ~b12 ‖ of the attitude baseline is
always constant and known a priori, too.

5.2 KF Modeling

In the following, the state-transition and measurement models of our KF ap-
proach shall be presented. Moreover, the parameters of the state and measure-
ment vectors are outlined, and a more detailed model description for inertial
and GNSS-based state parameters and measurements is presented.

5.2.1 State transition model

The state transition or state-space model describes how the states or parameters
of the system vary with time based on a specific linear model.

In our KF modeling, the state parameter transition between subsequent
epochs is given by:

x−n = Φn−1x
+
n−1 + wn (5.1)

where x+n−1 represents the state vector, Φn−1 the transition matrix of epoch
n− 1; x−n the predicted state vector of epoch n, and wn the so-called process or
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Parameter Description
~b13 Position of GNSS receiver 1 relative to GNSS receiver 3 [m]
~v1 Velocity of GNSS receiver 1 [m/s]
~a1 Acceleration of GNSS receiver 1 [m/s2]
ψ Heading angle of vehicle [rad]

ψ̇ Heading angular rate of vehicle [rad/s]
θ Elevation angle of vehicle [rad]

θ̇ Elevation angular rate of vehicle [rad/s]
ϕ Bank angle of vehicle [rad]
ϕ̇ Bank angular rate [rad/s]

λN sd
3 + Isd Sum of SD integer amb. of GNSS rec. 3 and SD ionospheric delay [m]
4ρMP

sd

1 Single-difference code-phase multipath of GPS receiver 1 [m]
4ρMP

sd

2 Single-difference code-phase multipath of GPS receiver 2 [m]
b~ω Bias vector of body-fixed frame angular rate measurement [rad/s]
b~a Bias vector of body-fixed frame acceleration measurements [m/s2]

Table 5.1: Description of the components of the state vector x

system noise vector. Together with the process noise vector one can define the
process noise covariance matrix as:

Qn = E
[
wnw

T
n

]
(5.2)

This matrix has the variances of the state parameter’s estimates based on
the system model.

The estimated parameters are collected inside the state vector, that is given
by:

x =
[
~bT13, ~v

T
1 , ~a

T
1 , ψ, ψ̇, θ, θ̇, ϕ, ϕ̇, (N

sd

3 + Isd)
T
, (4ρMP

sd

1 )
T
, (4ρMP

sd

2 )
T
, bT~ω , b

T
~a

]T
(5.3)

Table 5.1 explains the meaning of each component of the state vector.
Due to heterogeneous measurement nature, for each specific epoch only a

subset of the state vector can be updated, and this depends mainly on the
sensor type (GPS or IMU) which is providing the measurements in that specific
epoch. To describe this selection, we denote as sxn(γn, xn) the subset of the
state vector according to which sensor type γn provided the measurements at
epoch n. The measurements coming from GPS sensors get a γn = 1, whereas
measurements coming from the IMU sensor get a γn = 2. The corresponding
subsets of the state vector are pointed out in the following equations:
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sxn(1, xn) =
[
~bT13, ~v

T
1 , ~a

T
1 , ψ, ψ̇, θ, θ̇, (N

sd

3 + Isd)
T
, . . .

(4ρMP
sd

1 )
T
, (4ρMP

sd

2 )
T
, bT~ω , b

T
~a

]T
(5.4)

sxn(2, xn) =
[
~bT13, ~v

T
1 , ~a

T
1 , ψ, ψ̇, θ, θ̇, ϕ, ϕ̇, b

T
~ω , b

T
~a

]T
(5.5)

It should be also noted that in equation 5.4, from the vectors N sd
3 + Isd

and 4ρMP
sd
1/2 only the components that refers to satellites that are visible and

tracked in the specific epoch n are selected. It would have no sense to update
the estimation for, let’s say the single-difference integer ambiguity Nkl

3 if the
measurement coming from satellite k is not available in the considered epoch.

With reference to equation 5.1, the state transition model for selected subsets
of state parameters are going to be described. In the following, the subscripts
n−1 and n refer to the epoch number, whereas ∆t stands for the time difference
between the considered epochs.

Transition model for position and attitude related state parameters

For the position-velocity-acceleration (PVA) vectors, a constant acceleration is
assumed in subsequent epochs. The resulting state transition model is then
given by:  ~b13

~v1
~a1


n

=

 I3 ∆t ∆t2

2
03 I3 ∆t
03 03 I3

 ~b13
~v1
~a1


n−1

+

 ηx
ηv
ηa

 (5.6)

In case of the attitude state parameter transition, a constant angular rate is
asumed. The resulting model can be described therefore by:



ψ

ψ̇
θ

θ̇
ϕ
ϕ̇


n

=


I3 ∆t 03 03 03 03

03 I3 03 03 03 03

03 03 I3 ∆t 03 03

03 03 03 I3 03 03

03 03 03 03 I3 ∆t
03 03 03 03 03 I3





ψ

ψ̇
θ

θ̇
ϕ
ϕ̇


n−1

+


ηψ
ηψ̇
ηθ
ηθ̇
ηϕ
ηϕ̇

 (5.7)

The bias vectors both of the angular rate (b~ω) and acceleration measurement
(b~a) are instead assumed as constant.

Transition model for satellite-related state parameters

In case of the satellite-related parameters, these are varying relatively slowly
over time, so that they are assumed all as constant over subsequent epochs. In
particular, the sum of SD integer ambiguity and ionospheric delay λN sd

3 + Isd is
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Parameter Description
λφsd

1 Single-difference carrier phase measurement vector of receiver 1 [m]
λφsd

2 Single-difference carrier phase measurement vector of receiver 2 [m]
ρsd
1 Single-difference code phase measurement vector of receiver 1 [m]
ρsd
2 Single-difference code phase measurement vector of receiver 2 [m]

f sd

1d Single-difference Doppler frequency measurement vector of receiver 1 [1/s]
f sd

2d Single-difference Doppler frequency measurement vector of receiver 2 [1/s]
~ωbib Angular rate measurement vector in body-fixed frame [rad/s]
~ab 3D-acceleration measurement vector in body-fixed frame [m/s2]

Table 5.2: Description of the components of the measurement vector z

assumed to be quasi-constant, so that a very low value of process noise is chosen,
whereas for the SD multipath error of both GNSS receiver 1 and 2 4ρMP

sd
1/2 a

relatively higher process noise is chosen, in order to absorb short-time variations.

5.2.2 Measurement model

The measurement model describes how the single measurements of the sensor are
related to the system’s states. In general, for every epoch n, the measurement
vector zn, which contains all measured values, can be described as a function of
the state vector xn as:

zn = hn(xn) + vn (5.8)

with hn the (usually non-linear) function that relates one or more states
with each measured value and vn the measurement noise vector, which describes
the expected noise variances of every measured value. As we are modeling an
extended Kalman filter, hn isn’t linearized.

As for the process noise covariance matrix, the definition of the measurement
noise covariance matrix follows as:

Rn = E
[
vnv

T
n

]
(5.9)

In our model, the measurement vector comprises the following measured
values:

zn =

[
λ
(
φ̃sd

1

)T
, λ
(
φ̃sd

2

)T
, (ρ̃sd

1 )
T
, (ρ̃sd

1 )
T
, (f sd

1d)
T
, (f sd

2d)
T
,
(
~ωbib
)T
,
(
~ab
)T]T

(5.10)
Table 5.2 explains the meaning of each component of the measurement vec-

tor.
As for the system model, only a subset of this measurement are available

at a specific epoch, that because either GPS or IMU provided a measurement
for that epoch. In order to select the available measurements from the whole
measurement vector zn, at each epoch n a similar selection operator as for the

28



system model is applied, namely szn(γn, zn). As before, γn denotes the sensor
type (1 for GPS and 2 for IMU). The corresponding subsets of the measurement
vector are described as follows:

szn(1, zn) =

[
λ
(
φ̃sd

1

)T
, λ
(
φ̃sd

2

)T
, (ρ̃sd

1 )
T
, (ρ̃sd

1 )
T
, (f sd

1d)
T
, (f sd

2d)
T

]T
(5.11)

szn(2, zn) =
[(
~ω b
ib

)T
,
(
~ab
)T]T

(5.12)

Whereas the selection operator for the IMU-related measurements is in gen-
eral selecting the same amount of measurements for every epoch, on GPS side,
according to what has been said in the system model also, only the available
single-difference measurements at each epoch n, coming from visible and tracked
satellites, are selected.

Model for GNSS measurements

With reference to section 4.2, the individual single-difference corrected pseudo-
range measurements are modeled as:

ρ̃kl1 = ρkl1 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + c(δk − δl)− T kl1

= (~e kl1 )T ·~b13 +4ρMP
kl
1 + Ikl + ηkl1 (5.13)

ρ̃kl2 = ρkl2 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + ckl12 + c(δk − δl)− T kl2

= (~e kl1 )T (~b13 −~b12) +4ρMP
kl
2 + Ikl + ηkl2 (5.14)

ρ̃kl3 = ρkl3 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + ckl13 + c(δk − δl)− T kl3

= Ikl + ηkl3 (5.15)

Putting every kl-satellite pair inside a vector, the above equation can be
rewritten in matrix-vector notation as:

ρ̃sd

1 = Hsd

1 ·~b13 +4ρMP
sd

1 + Isd + η sd

1 (5.16)

ρ̃sd

2 = Hsd

1 · (~b13 −~b12) +4ρMP
sd

2 + Isd + η sd

2 (5.17)

ρ̃sd

3 = Isd + η sd

3 (5.18)

Always having section 4.2 as reference, the individual single-difference cor-
rected carrier phase measurements are modeled as:
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λφ̃kl1 = λφkl1 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + c(δk − δl)− λNkl

13 − T kl1

= (~e kl1 )T ·~b13 + λNkl
3 − Ikl + εkl1 (5.19)

λφ̃kl2 = λφkl2 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + ckl12 + c(δk − δl)− . . .

λNkl
13 + λNkl

12 − T kl2 (5.20)

= (~e kl1 )T (~b13 −~b12) + λNkl
3 − Ikl + εkl2 (5.21)

λφ̃kl3 = λφkl3 −
(
~e kl1

)
T · ~r3 +

(
~e k1
)
T · ~r k −

(
~e l1
)
T · ~r l + ckl13 + c(δk − δl)− T kl3

= λNkl
3 − Ikl + εkl3 (5.22)

Again, the system of equation can be expressed in matrix-vector notation
as:

λφ̃sd

1 = Hsd

1 ·~b13 + λN sd

3 − I sd + ε sd

1 (5.23)

λφ̃sd

2 = Hsd

1 · (~b13 −~b12) + λN sd

3 − Isd + ε sd

2 (5.24)

λφ̃sd

3 = λN sd

3 − Isd + ε sd

3 (5.25)

Model for INS measurements

The measurement model for an INS-based KF update comprehends both the
modeling of the body-fixed frame acceleration and angular rate measurements.

The body frame acceleration measurements are modeled as (the superscript
refers to the coordinate frame):

~̃f b = ~a b +~b ba − ~g b + ηa

= Rbe (~a
e + 2Ω e

ie~v
e) +~b ba −Rbn~g

n + ηa (5.26)

where, as discussed in section 3.1.2, ~̃f b represents the measured acceleration
in body-fixed frame, ~a the true acceleration, 2Ωeie~v

e the Coriolis acceleration, ~b
the bias error and ~g the gravity vector. η is modeled as Gaussian noise.

The body frame angular rate measurements are instead modeled as (super-
script always refers to the coordinate frame):

~̃ωbib = ~ω b
ib +

~b bω + ηω

= ~ω b
ie + ~ω b

en + ~ω b
nb +

~b bω + ηω (5.27)

= Rbe(~ω
e
ie + ~ω e

en) +
(
R̂Euler

)−1

 ϕ̇

θ̇

ψ̇

+~bbω + ηω (5.28)
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where (see section 2.4) ~̃ω b
ib represents the measured angular rates, ~ω e

ie and
~ω e
en the angular rates describing the orientation changes between the inertial

and ECEF frame and between the ECEF and NED frame, respectively. R̂Euler

stands for the estimated transformation matrix for Euler attitude rates, whereas
ϕ̇, θ̇ and ψ̇ are the bank, elevation and heading Euler attitude rates, ~bω the bias
error and η is modeled, as usual, as Gaussian noise.

5.3 The Kalman Filter algorithm

The Kalman Filter algorithm is an iterative algorithm that comprises basically
two alternating steps: the state prediction step and the state update step. In
the first one, the system model is applied to predict the behavior of the system
in the next epoch basing on a-priori information such as those coming from
the movement model. In the second step, the update step, the prediction is
confronted with the actual measurements, and a trade-off between the two esti-
mates is chosen as optimal. This optimum is computed basing on the stochastic
properties both of the state transition and measurement model with a Bayesian
approach on a MMSE (minimum mean square error) basis.

One small clarification about the notations: in literature, all variables re-
garding the prediction step are denoted with minus sign as superscript, whereas
the ones regarding the update step are denoted with a plus sign as superscript.

5.3.1 The prediction step

In the prediction step, the system model is used to make an estimate on the
state variable’s value for the subsequent epoch. In this phase, a prediction on
the state parameter’s values on the subsequent epoch is done only by assuming
a linear model, such as a movement model. The equation that describes this
prediction was already mentioned in Section 5.2.1, and it is repeated here for
convenience:

x̂−n = Φn−1x̂
+
n−1 (5.29)

where x̂+n−1 stands for the estimate of the state vector coming from the last
update phase, namely those of epoch n−1, Φn−1 the transition matrix of epoch
n−1, x̂−n the estimate of the predicted state vector for the current epoch, namely
n.

Together with the state vector, there is also another quantity that should be
updated: namely the error covariance matrix, which is defined as the expected
value of the state vector residuals, which in turn are defined as the difference or
error between the real and estimated state vector:

P = E
[
(x− x̂)(x− x̂)T

]
(5.30)

where x is the true and x̂ the estimated state vector. This matrix could
be related either to the prediction or update step, in which case the matrix is
called a-priori or a-posteriori error covariance matrix.
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In the prediction step, the a-priori error covariance matrix P−
n is updated

as:

P−
n = Φn−1P

+
n−1Φ

T
n−1 +Qn−1 (5.31)

where P+
n−1, which represents the a-posteriori covariance matrix of the prior

update step. One can observe here that the values of P−
n could only have

become bigger than the ones of P+
n−1 (as long as the transition matrix Φ is not

the identity matrix, which is usually never the case). This is consistent with
the fact that in the prediction step no “real” information, such as a measured
value, is given to the system, and thus the errors, and thus its (co)-variances,
could only become bigger.

5.3.2 The update step

In this step, the measured values are taken into account and “fed back” to the
system. As it has been mentioned in Section 5.2.1, the relationship between the
state and measurement vector is:

zn = hn(xn) + vn (5.32)

where hn(xn) represents the measurement function and vn the measurement
noise vector. The non-linear measurement function hn(xn) is linearized to the
measurement matrix Hn as:

hn(xn) ≈ Hnxn (5.33)

which is then used to calculate the Kalman gain matrix Kn and the a-
posteriori covariance matrix P+

n , as will be seen later in this section. The
calculation of the measurement matrix can be then performed as:

Hn|xn=x0
=

∂

∂xn
hn(xn)

∣∣∣∣
xn=x0

(5.34)

The update of the state vector is performed as:

x̂+n = x̂−n +Kn(zn − hn(x̂
−
n )) (5.35)

where Kn stands for the Kalman gain matrix and the term zn − hn(x̂
−
n ) is

defined as measurement innovation, because it is the difference between the ac-
tual measured values zn and the estimated state parameters from the prediction
phase x̂−n transformed into the measurement space by hn(x̂

−
n ). This discrepancy

between what the sensors are telling and what the linear model is pointing out
is weighted by the Kalman gain matrix Kn and then finally added to the just
calculated predicted state vector x̂−n coming from the last prediction phase.

The a-posteriori error covariance matrix is updated as follows:

P+
n = (I −KnHn)P

−
n (5.36)
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with I being the identity matrix, and Kn the Kalman gain matrix, which is
defined as:

Kn = P−
n H

T
n (HnP

−
n H

T
n +Rn)

−1 (5.37)

The “updated” state vector x̂+n contains now state estimates that are opti-
mal, considering both the new information provided by the measurements and
the prediction of the linear model. This procedure should be iterated as long as
new measurement data is available.[15, 1]
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Chapter 6

Own contributions and
measurement results

6.1 Improvements on static RTK positioning

Absolute positioning with centimeter level accuracy requires the use of the car-
rier phase measurements, which are characterized by centimeter level noise stan-
dard deviation. The carrier phase positioning requires the correct resolution of
the integer ambiguities, as discussed in section 4.4. Moreover, we rely on double
measurement differentiation to get rid of common both satellite related as well
as receiver related error sources.

6.1.1 GNSS measurement set-up

To investigate the feasibility of integer ambiguity fixing on double difference
level, we set up a measurement campaign using two low-cost GNSS antennas.
Measurements have been taken by recording GPS pseudorange and carrier phase
measurement simultaneously. We took measurements by putting the two anten-
nas on various distances between each other, from a couple of meters up to about
100 meters. We performed the recordings in environments with very good to
good satellite visibility and with relatively low possible multipath reflectors, in
order to have a quite robust and error-free measurement pool. We successively
performed artificial satellite removal and multipath injection to investigate the
dependency of these occurrences with the quality of the fixing process.

Figure 6.1 shows a typical set-up of the GNSS antennas for one of the mea-
surement sessions. According to Figure 5.1, the two GNSS antennas on the
car’s rooftop span the ~b12 baseline, which one can resolve for the Euler attitude
angles to get the vehicle’s orientation. The ~b13 baseline spanned between one
rooftop antenna and the antenna on the tripod, instead, is able to position the
car relatively to the static tripod antenna, and thus to absolutely position the
car. The distance between the rooftop antennas was 1.02 meters, whereas the
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Figure 6.1: Measurement session at Garching: detail of two GNSS u-blox an-
tennas on the car rooftop (bottom-left) and of the third GNSS u-blox antenna
on the tripod (bottom-right)

front-rooftop to tripod baseline measured 4.7 meters.
This measurement session took place at the student’s parking lot of the

TUM university campus at Garching, Munich. We wanted to have GNSS
measurements with maximal sky visibility and mostly no multipath reflectors.
Other measurement sessions have been made in similar conditions: one at
Aschheim, Munich, near a cornfield, and another session has been performed at
the Königsplatz, Munich. In these two other sessions we wanted to enlarge the
spacing between the GNSS antennas so to raise the norm of the ~b13 baseline, so
we putted the two antennas onto separate tripods. In Aschheim we performed
a measurement session with a baseline length of more than 100 meters, whereas
the one at the Königpslatz measured a little more than 15 meters. For all mea-
surement sessions, the distances have been measured with a Leica DISTOTM

laser distance-meter and used as a metric for evaluating the ambiguity fixing
algorithm.

6.1.2 Fixing algorithm description

The developed algorithm performs integer ambiguity fixing on double difference
level of a relative baseline between two low-cost GNSS receivers. We strongly
rely on carrier phase measurement to achieve centimeter level accuracy.
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Kalman Filter for float ambiguity estimation

The first step is to get a float estimation of the integer ambiguity. This can be
done with a Kalman Filter that estimates the baseline, the float ambiguities and
the code multipath by taking double difference code and phase measurements.

The state parameter vector can be defined as

xn =

[(
~b12, n

)T
,
(
Nsd

12, n

)T
,
(
4ρMP

sd

12, n

)T]T
The measurement vector consists of

zn =
[(
λφsd12, n

)T
,
(
ρsd12, n

)T]T
The Kalman Filter is first initialized with a least-squares estimation of the

baseline and float ambiguities as[
~̂b12
N̂sd

12

]
=
(
GTR−1

1 G
)−1

GTR−1
1 z1 (6.1)

where with

G =

[
Hsd

ENU λI
Hsd

ENU 0

]
it is meant the geometry matrix and R1 stands for the measurement noise

covariance matrix. The subscript refers to the epoch number, thus means that
we are in the initialization epoch.

The float ambiguity residuals are then used to make a first estimation of the
multipath parameter:

[
rφsd

12

rρsd12

]
= z1 −Gx̂LS (6.2)

4ρ̂MP,init
sd

12 = rρsd12 (6.3)

where with rφsd
12

and rρsd12 the double difference carrier phase and code phase
measurement residuals of the least-squares estimation are respectively meant.
The multipath parameter is initialized only with the code phase residuals. With
this values the Kalman Filter is first initialized and then moved forward until
the baseline estimation has reached a min-max stability given by:

∆bminmax = max
(
max

(
~b12 [n−N + 1, n−N + 2, . . . , n]

)
− . . . (6.4)

min
(
~b12 [n−N + 1, n−N + 2, . . . , n]

))
(6.5)

where the maximum variation over a temporal window of the last N epochs
is searched component by component. If this value falls below a threshold, the
integer ambiguity fixing algorithm is started.
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Integer collection phase

When the stability of the baseline estimation in the float KF defined in equation
6.4 reaches a first threshold, the integer collection phase is started. During this
phase, the decorrelated set of integer ambiguities is estimated for every epoch
using the LAMBDA algorithm introduced in section 4.4. This algorithm takes as
input the float estimation of the ambiguities N̂ performed with the float KF and
its covariance matrix extracted from the Kalman filter’s a-posteriori covariance
matrix P+

n defined in section 5.3. This operation is repeated for every epoch,
and all the unique candidate vectors are merged into a candidate pool matrix,
which will be the set of integer candidate vectors that will be evaluated in the
next phase.

Integer selection phase

During this phase, all the integer candidate vectors collected inside the pool
are evaluated. For every epoch, the sum of squared error (SSE) of the phase
measurement residuals are used as an evaluation criteria.

The double difference phase measurement residual for the i-th integer can-
didate is calculated as

rφ, i = λφsd12 −Hsd
ENU

~̆b12, i − λN̆i (6.6)

with

~̆b12, i =
((
Hsd

ENU

)T
R−1
φ Hsd

ENU

)−1 (
Hsd

ENU

)T (
R−1
φ λ

(
φsd12 − N̆i

))
(6.7)

being the least-squares baseline estimate using the i-th integer candidate N̆i.
Rφ stands for the double difference phase measurement covariance matrix. This
baseline estimate is used to calculate the residuals of the phase measurement,
which should be minimal if the actual integer candidate vector N̆i is correct. In
order to have a scalar parameter for measuring the magnitude of the residuals
for each candidate vector, the SSE for each candidate is calculated as

SSEφ, i =
(
(rφ, i)

T
R−1
φ rφ, i

)
/K (6.8)

where K stands for the number of satellites and in the former equation the
division serves as a normalization factor. This SSE value defined in equation
6.8 can be interpreted as the square of the ratio between the residual error
defined in equation 6.6 and its uncertainty given by the square root of the phase
covariance matrix Rφ. By setting a threshold for the SSEφ of 10, we allow the
ratio between error and uncertainty to grow up to

√
10 ≈ 3, 16, that means that

the actual residual error is allowed to be three times larger than its expected
uncertainty.

For every selection epoch, the phase SSE of every candidate vector is calcu-
lated, and only the candidates having SSE below the threshold are selected as
possibly correct candidates. If there are less than 10 candidates that fall below
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the SSE threshold, then the 10 “best” candidates, sorted by phase residual SSE,
are selected, in order to have a minimum of 10 candidates to be further evaluated
with our “best” candidate selection criteria presented in the next subsection.

“Best” candidate selection criteria

The candidates selected according to the previous subsection are then inspected
over time. Therefore, we keep track of each least-squares baseline estimate for
each candidate over time.

To simplify the expression and without much loss of generality, if one sup-
poses a diagonal covariance matrix having unitary variance (thus Rφ = I) the
least-squares baseline estimate in equation 6.7 can be rewritten as (in the fol-
lowing, the subscripts are dropped for simplicity):

b̌ =
(
HTH

)−1
HT

(
λφ− λN̆

)
(6.9)

As of equation 4.7, the double difference carrier phase measurement can be
modeled as

λφ = Hb+ λN + ε (6.10)

where ε is modeled as Gaussian noise having, for simplicity, unitary variance.
By defining

ε′ =
(
HTH

)−1
HTε

and by substituting the expression of λφ from equation 6.10 in equation 6.9
one can write

b̌ =
(
HTH

)−1
HT

(
Hb+ λ

(
N − N̆

)
+ ε
)

= b+
(
HTH

)−1
HTλ∆N + ε′

where with ∆N we mean the error of the estimated integer candidate vector
N̆ .

Now, if b̌ is tracked over time for each candidate and supposing that the right
candidate is inside the pool, it will happen that ∆N is zero for the right can-
didate. All other candidates will have ∆N 6= 0, and thus its baseline estimates
will vary over time due to the changing e-vectors inside the H-matrix. This will
cause a slow drift of the baseline estimate that can be tracked by a least-squares
linear fitting which can best model the quasi-linear drift of the e-vectors sinked
into the Gaussian noise ε′.

The simple linear model (the subscript refers to the epoch number)

bn = b1 + (n− 1)∆t ·∆b

can be written in vector-matrix form as
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[b1, b2, · · · , bN ]
T
= G

[
b1
∆b

]
having

G =

[
1 1 · · · 1
0 ∆t · · · (N − 1)∆t

]T
The slope of the baseline drift ∆b can be best computed by a least-squares

estimation.
The selected integer ambiguity candidates are then sorted by this baseline

drift parameter. After waiting for a minimum number of epochs that are nec-
essary to be able to observe the drift, the “best” candidate is chosen as the
one having (1) a value of the phase SSE under a certain threshold; (2) the one
showing lowest baseline drift and (3) the one having a drift at least a half so big
as the second best candidate.

6.1.3 Fixing algorithm results

Baseline drift

Figure 6.2 shows the drift of the East component of the least-squares baseline
estimate defined in equation 6.7 over time. The data is taken from the mea-
surement session on the 100m baseline in Aschheim. One can clearly see that
for the right candidate vector (candidate #1 in the figure) the drift is nearly
absent (less than 5mm in 40 seconds), whereas candidate #11 and #90 show
a noticeably increased drift over time. During the candidate selection process,
all three candidates showed a reasonable measurement SSE, but in order to be
able to distinguish the correct one, the least-square baseline temporal drift has
to be taken into account.

The problem of distinguishing the right candidate becomes more clear if one
takes a look at Figure 6.3, which shows a confront between the least-squares
baseline drift and the SSE of the phase residuals over time for two selected can-
didates. The plots refer to the measurement session in Garching, performed with
a baseline length of almost 5 meters. As one can see, the candidate #338 (the
wrong one) shows a consecutively decreased phase residuals SSE. This can hap-
pen if the geometry accidentally allows a strong reduction of the measurement
residual for “wrong” candidates, causing a low SSE value. But if one instead
takes a look at the least-squares baseline drift, it shows the opposite picture:
the baseline is almost not drifting for the correct candidate (#1), whereas for
the “wrong” one (#338), it shows a drift of almost 4cm in 40 seconds.

The plots in Figure 6.3 prove that we are able to select the right candidate
even when the measurement SSE doesn’t allow a clear distinction.
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Figure 6.2: Least-squares baseline drift over time (East component) for the
long-range 100 meter baseline recorded in Aschheim
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Figure 6.3: Confront of baseline drift (Up component) and filtered SSE of phase
residuals for candidates #1 and #388, respectively; data coming from measure-
ment session in Garching
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time to fix [s] length [m] East [m] North [m] Up [m] Head [deg] Elev [deg]

124,6 104,1325 12,8940 103,3305 -0,3498 7,1129 -0,1925
103,0 104,1345 12,8950 103,3324 -0,3546 7,1132 -0,1951
103,6 104,1308 12,8960 103,3285 -0,3635 7,1141 -0,2000
113,0 104,1263 12,8993 103,3235 -0,3655 7,1162 -0,2011
100,6 104,1254 12,8994 103,3227 -0,3595 7,1163 -0,1978
111,6 104,1259 12,8991 103,3232 -0,3542 7,1161 -0,1949
99,6 104,1255 12,8974 103,3230 -0,3567 7,1152 -0,1963
199,4 98,0184 5,0177 97,4995 -8,7332 2,9461 -5,1117
118,6 104,1282 12,8919 103,3264 -0,3555 7,1120 -0,1956
112,4 104,1291 12,8897 103,3276 -0,3558 7,1107 -0,1958

Table 6.1: overview of the fixing results (columns 2 to 5 refer to the fixed
baseline) for the long range baseline in Aschheim

Fixing results

The fixing algorithm has been run in post-processing mode using recorded GPS
pseudorange and carrier phase measurements. The measurement sessions, as
already said, have been performed with good to very good sky visibility and
with possibly very low probability of signal reflectors to mitigate the multipath
error. The GNSS antennas have been placed with various distances from each
other, from about 5 to 100 meters. The algorithm iterates over the recorded
measurement samples until it obtains a result, then it resets automatically and
determines a new independent solution as long as there are more samples to
process.

Table 6.1 shows the result in terms of estimated baseline after fixing the
integer candidate vector, having on the respective columns from left to right the
elapsed time for producing the result, the baseline length and its East, North and
Up components in the local navigation frame as well as the computed heading
and elevation attitude angles. The length of the baselines, corresponding to the
distance between the two GNSS antennas, have been compared with the distance
measurement performed with the laser distance meter, as said in section 6.1.1.

As one can see, the algorithm succeeded in outputting the right baseline
estimation 9 out of 10 times, giving results with a uncertainty of about a cen-
timeter.

To provide some statistical data, the fixing results are collected for all mea-
surement sessions (Garching, Königsplatz and Aschheim). In the following,
Table 6.2 shows an overview of the results in terms of number of independent
results provided, the percentage of correct ambiguity fixing and the mean time
it takes to provide a result. From the table we can see that the algorithm is
able to find the correct integer candidate independently from the distance be-
tween the two antennas in about 90% of the time. Moreover, we can observe
a correlation between the mean time to fix and the percentage of correct fix-
ing: this is consistent with our baseline variation model where the baseline drift
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measurement session
∥∥∥~b∥∥∥[m] results success rate mean t. to fix [s]

Aschheim, long range 104,13 10 90% 118,6
Aschheim, mid-range 16,81 8 87,5% 104,8
Garching, front-tripod 4,70 25 92% 141,4
Garching, rear-tripod 5,56 24 91,6% 142,2
Königsplatz, mid-range 13,89 8 100% 153,0

Table 6.2: Overview of number of results, success rate and time to fix for each
measurement session

parameter results standard dev.

baseline East comp. 63 0,0027 m
baseline North comp. 63 0,0059 m
baseline Up comp. 63 0,0044m
baseline length 63 0,0113 m

attitude Heading angle 61 0,0300 deg
attitude Elev. angle 61 0,0390 deg

Table 6.3: statistics of the baseline estimate variation over all measurement
sessions (outliers have been removed)

observability increases with the time of observation.
In order to evaluate the repeatability of the successive fixing results, the stan-

dard deviation from the correct result has been calculated, putting together all
results provided in each measurement session. To calculate this standard devi-
ation, first the outliers (or incorrect fixes) have been excluded, then the mean
of each result parameter has been subtracted separately for each measurement
session.

Table 6.3 shows the standard deviation of each baseline component, the
baseline length and the attitude angles, once that the mean has been subtracted.
As one can see, the standard deviation of the three baseline components remains
in the order of millimeters, the one of the length parameter remains in the order
of one centimeter, whereas for the attitude angles the mean deviation is less
than 0,05 degrees.

Figure 6.4 and Figure 6.5 present histogram plots of the baseline’s compo-
nent in the local East-North-Up navigation frame and of the attitude angles,
respectively. As for table 6.3, the incorrect results have been excluded from the
plots.

Results show that we are able to fix to the correct ambiguity candidate
mostly independently from the baseline length in about 9 out of 10 times achiev-
ing centimeter-level accuracy thanks to carrier phase positioning. The measure-
ments has been taken in environments with good to very good sky visibility and
with possibly very low probability of multipath reflectors. The fixing algorithm
has been also tested with artificially injected code phase multipath error mod-
eled as a random-walk process and with artificial measurement outages, where
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Figure 6.4: Histogram plot of the baseline deviation for each component from
the mean value (outliers have been removed)

Figure 6.5: Histogram plot of the attitude angle’s deviation from the mean value
(outliers have been removed)
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we reduced the number of available measurements for the whole fixing process.
The correct fixing success ratio seems to be rather independent from code phase
multipath injection but showed some dependency on the number of available
carrier phase measurements: in case of reduced measurement availability, the
drift of the baseline components becomes less evident, lowering the evidence of
the correct integer ambiguity candidate.

Regarding the success rate introduced in table 6.2, the incorrect fixes may
have two major causes: (1) the variability of the carrier phase measurement
covariance matrix Rφ may scale the least-squares estimation of the baseline
(see equation 6.7) differently for each epoch, and (2) the unmodeled carrier
phase multipath error could reshape the temporal variation of the least-squares
baseline estimation such that linear regression becomes not feasible. Possible
improvements against this drawbacks may lie in case of (1) to consider a constant
phase measurement covariance matrix during the baseline tracking epochs in
order to avoid heterogeneous error scaling, and in case of (2) to model, along with
code phase multipath error, a separate carrier phase multipath error parameter
in the float Kalman Filter.

6.2 Refinements on the inertial sensor model

In this section, the enhancements on the mathematical model that characterizes
the inertial measurements shall be outlined. We designed an INS mechanization
in the Earth-centered Earth-fixed (ECEF) frame, the latter being the coordinate
frame in which we estimate the position, velocity and acceleration parameters
in our Kalman Filter approach. Therefore, particular attention has to be made
when estimating the rotation matrix from the sensor related body-fixed frame
to the mechanization related ECEF frame.

6.2.1 Calibration and first-order bias estimation

The inertial sensor is first calibrated with help of the GNSS-based attitude com-
putation thanks to the two GNSS antennas on the car rooftop. With reference
on Figure 5.1, the baseline ~b12 can be expressed in the body-fixed frame hav-
ing only the first component unequal to zero, as it is spanned on the vehicle’s
longitudinal axis. Rotating the baseline into the NED navigation frame yields:

~b b12 = [bl, 0, 0]
T

(6.11)

~b n12 = Rnb
~b b12

= R3(−ψ)R2(−θ)R1(−ϕ)~b b12 bN
bE
bD

 =

 bl cos(ψ) cos(θ)
bl sin(ψ) cos(θ)

−bl sin(θ)

 (6.12)
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where bl stands for the fix baseline length. Solving equation set 6.12 for the
attitude angles ψand θ yields

ψ̂ = arctan

(
b̂E

b̂N

)
(6.13)

θ̂ = arctan

 −b̂D√(
b̂N

)2
+
(
b̂E

)2
 (6.14)

Once that the baseline estimation is performed using ambiguity-fixed GNSS
carrier phase measurements, the attitude angles can be extracted and used for
initializing the inertial sensor. The two-antenna set-up of the GNSS sensor part
permits a very precise initialization of the attitude angles, and the ambiguity
fixing can be done with high reliability if the length of the baseline is known[16].
It has to be noted though that due to the along-track alignment of the baseline,
the latter is invariant to rotation along this axis, and thus its expression in
the NED frame independent from the roll attitude angle ϕ. Although in car
navigation the sensor are mostly aligned on a flat terrain and thus both θ and
ϕ can be assumed as zero, for some applications this may not be true. The only
way to get a rough estimate of the roll angle is by using the gravity vector.

Similarly as for the baseline vector in the body frame, the gravity vector in
the navigation frame has only the Down component which is unequal to zero,
and rotating it back to the body frame yields

~g n = [0, 0, g]
T

(6.15)

~g b = Rbn~g
b (6.16)

= R1(ϕ)R2(θ)R3(ψ)~g
b (6.17) gX

gY
gZ

 =

 −g sin(θ)
sin(ϕ) cos(θ)
cos(ϕ) cos(θ)

 (6.18)

The rough estimation of the roll angle can be performed as

ϕ̂ = arctan

(
fY
fX

)
(6.19)

Where with fX and fY it is meant the first and second components of the
measured acceleration of the accelerometers during the calibration phase, when
the vehicle is not moving. This model is not accurate due to the accelerometer
biases, but is a simple and robust solution to get the third attitude angle that
otherwise would have been just assumed equal to zero.
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The first-order bias estimation is then simply done by integrating both the
angular rate and acceleration values once. One can observe a linear trend that
corresponds to the bias offset in the former values. For every epoch n, the values
are integrated as

∆~an+1 = ~fn − ~gn + (tn − tn−1)∆~an (6.20)

∆~ωn+1 = ~ωn + (tn − tn−1)∆~ωn (6.21)

where with ∆~a and ∆~ω the integrated acceleration and angular rates are re-
spectively meant. Once that all calibration epochs are processed, linear regres-
sion is performed to optimally get the linear trend from the noisy measurements.
The linear regression is simply performed as

[
~̂a1
∆~̂a

]
=

(
GTG

)−1
GT∆~a (6.22)[

~̂ω1

∆~̂ω

]
=

(
GTG

)−1
GT∆~ω (6.23)

having

G =

[
1 1 · · · 1
0 t2 − t1 · · · tN − t1

]T
The estimated least-squares linear slopes ∆~̂a and ∆~̂ω can be directly used

to initialize the acceleration and angular rate biases, respectively.
Figure 6.6 shows, for each accelerometer measurement, the integrated ac-

celerations during the calibration phase (when the car is standing) once that
the gravity vector has been subtracted. The dashed lines represent the linear
least-squares regression that has been performed to extract the first order bias.
As one can see, the curves fit very well for with the linear model, and this
confirms the pertinence of the model for first-order bias estimation, as this is
mainly the dominant error in low-cost INS sensors. But this is unfortunately
not enough for estimating precisely the acceleration biases. Another factor that
could reduce the accuracy in the bias estimation is the correct calculation of the
gravity vector, which implies also the correct calculation of the attitude angles,
in order to correctly rotate the vector into the body-fixed frame. However, this
bias estimation method should be sufficiently accurate for our purposes.

6.2.2 Improvements on the mathematical model

As already mentioned earlier in this work, one of the key points in inertial nav-
igation is the correct rotation from the body-fixed frame into the coordinate
frame in which the tight coupling is mechanized (in our case it is the ECEF-
frame). This involves the correct estimation, for every epoch, of the respective
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rotation matrix. Besides improving the mathematical formula to estimate this
rotation matrix, other small effects like the Coriolis acceleration has been con-
sidered and corrected inside the code.

Acceleration measurement model

As already mentioned in section 5.2.2, the acceleration measurements are mod-
eled as

~̃f b = Rbe (~a
e + 2Ω e

ie~v
e) +~b ba −Rbn~g

n + ηa (6.24)

where ~̃f b is the measured acceleration in the body-fixed frame, ~a e and ~v e are
the acceleration and velocity, respectively, of the vehicle in the ECEF frame,
2Ω e

ie~v
e is the Coriolis acceleration expressed in the ECEF frame, ~b ba are the

accelerometer biases in the body frame, ~g n is the gravity vector given in the
NED frame, and ηa is modeled as Gaussian noise.

Taking to the left side the known terms, equation 6.24 becomes:

~̃f bcorr = ~̃f b − 2RbeΩ
e
ie~v

e −Rbn~g
n

= Rbe~a
e +~b ba + ηa

in which the rotated Coriolis acceleration and gravity vector has been sub-
tracted from the raw measurements.

Angular rate measurement model

Again, as written in section 5.2.2, the angular rate measurements are modeled
as

~̃ω b
ib = Rbe(~ω

e
ie + ~ω e

en) +
(
R̂Euler

)−1

 ϕ̇

θ̇

ψ̇

+~b bω + ηω (6.25)

where ~̃ω b
ib are the angular rates measured by the gyroscopes, ~ω e

ie and ~ω
e
en are

the angular rates of the ECEF frame w.r.t. inertial frame and of the navigation
frame w.r.t. the ECEF frame, respectively, R̂Euler is the estimated Euler matrix
(see section 2.4), ϕ̇, θ̇ and ψ̇ are the time derivatives of the Euler attitude angles

which we estimate in our Kalman Filter, ~b bω are the angular rate bias errors and
ηω is modeled as Gaussian noise.

Taking to the left side the known term yields

~̃ωbib, corr = ~̃ωbib −Rbe(~ω
e
ie + ~ω e

en)

=
(
R̂Euler

)−1

 ϕ̇

θ̇

ψ̇

+~bbω + ηω
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where the known angular rates are subtracted from the gyro measurements.

Estimation of the ECEF-to-body frame rotation matrix in closed form

With reference to section 2.3, equation 2.5, in case of ECEF-to-body coordinate
frame rotation, can be written as

Ṙeb = RebΩ
b
eb (6.26)

where Ωbeb is the skew-symmetric matrix of ~ωbeb. This first-order differential
equation can be solved in closed form.

Any first-order differential equation of the form

dy

dt
= yt

can be solved explicitly for the time interval ∆t = [t1 t2] as

y(t2)

y(t1)
= e

´ t2
t1
x·dt

if ∆t is small enough, one can assume x as constant during this interval. By
defining y(tn) = yn one can write the differential equation in recursive form as

yn+1 = yne
x∆t

= yn

∞∑
p=0

(x∆t)
p

p!

where the expression of the exponential function as infinite power series has
been used. Plugging back the above expression into equation 6.26 yields (in the
following, for simplicity, the indexes of the coordinate frames will be dropped)

Rn+1 = Rn

∞∑
p=0

Sp

p!
(6.27)

where

S = Ω∆t

is the skew-symmetric matrix describing the small angle displacement in the
relatively small time interval ∆t. As a 3-by-3 skew-symmetric matrix,S has the
following properties:Sk = (−1)

⌊
k−1
2

⌋
|θ|k−1

S; k ≥ 3; k odd

Sk = (−1)

⌊
k−1
2

⌋
|θ|k−2

S2 k ≥ 4; k even

where with b•c it is meant the lower integer part of • and
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|θ| = ‖~ω∆t‖

Equation 6.27 can be expanded and rearranged as

Rn+1 = Rn

[
I3 +

(
1

2!
− 1

4!
|θ|2 + 1

6!
|θ|4 − · · ·

)
S2 + . . .(

1− 1

3!
|θ|3 + 1

5!
|θ|5 − · · ·

)
S

]
= Rn

[
I3 +

( ∞∑
n=1

(−1)n−1 |θ|2(n−1)

(2n)!

)
S2 + . . . (6.28)( ∞∑

n=0

(−1)n |θ|2n

(2n)!

)
S

]
Now, by expressing the sine and cosine functions as infinite power series, one

can write:

sin (x)

x
=

∞∑
n=0

(−1)nx2n

(2n)!

1− cos (x)

x2
=

∞∑
n=1

(−1)n−1x2(n−1)

(2n)!

and thus rewrite equation 6.28 as:

Rn+1 = Rn

(
1 +

sin (|θ|)
|θ|

S +
1− cos (|θ|)

|θ|2
S2

)
(6.29)

in which the updated rotation matrix Rn+1 can be computed from its pre-
vious update Rn and the linearized small angle variations described in S and
|θ| [2]. This gives a recursive and closed form solution for differential equa-
tion 6.26, and corresponds in literature to the matrix notation of the Rodriguez
formula[17].

Now, back to equation 6.26, the angular rate vector ~ωebe can be split as

~ωbeb = ~ωbib − ~ωbie

= ~ωbib −Rbe~ω
e
ie (6.30)

where ~ωbib is the angular rate sensed by the gyroscopes and ~ωeie is the angular
rate referred to Earth rotation and can be easily expressed as

~ωeie = [0, 0, ωe]
T

having with ωe the Earth rotation rate in rad/s.
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The rotation matrix Rbe from equation 6.30 can be updated using equation
6.29 by letting

S = Ωbeb∆t

and

|θ| =
∥∥~ωbeb∆t∥∥

Rbe can then be used in both the acceleration measurement model (equation
6.24) and the angular rate measurement model (equation 6.25). This closed form
estimation of the rotation matrix gives a very precise result, thus increasing the
accuracy of the model itself. The only two assumed approximations are (1) that
the angular rate ~ωbeb is constant over the interval ∆t and (2) that

[
Rbe~ω

e
ie

]
n
≈[

Rbe~ω
e
ie

]
n+1

(n refers to the epoch index), which is admissible because of the
relatively small magnitude of ~ωeie itself.

Estimation of the Euler matrix

As already mentioned in section 2.4, the so-defined called Euler matrix describes
the differential nonlinear relationship between the angular rate of the body frame
w.r.t. the navigation frame (~ωbnb) and the time derivative of the Euler attitude
angles. The Euler matrix can be approximated using the previous estimation of
the attitude angles. Denote with n the epoch number, the approximated Euler
matrix can be computed as

R̂Euler
n =

 1 sin(ϕ̂n−1)tan(θ̂n−1) cos(ϕ̂n−1)tan(θ̂n−1)
0 cos(ϕ̂n−1) −sin(ϕ̂n−1)

0 sin(ϕ̂n−1)sec(θ̂n−1) cos(ϕ̂n−1)sec(θ̂n−1)

 (6.31)

where ϕ̂and θ̂ are the roll and elevation angle estimates coming from the last
update of the KF state vector. With this approximation we get

~ωbnb ≈
(
R̂Euler
n

)−1

 ϕ̇

θ̇

ψ̇

 (6.32)

which is a linearized relationship between ~ωbnb and the Euler attitude rates
that can be used in the angular rate measurement model of equation 6.25.

Estimation of the navigation frame w.r.t. ECEF frame angular rate
vector

As one can see from equation 6.25, the mathematical model for the angular
rates involves the estimation of the angular rate vector ~ωeen, which has to be
given in coordinates in the ECEF frame.
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Let’s start with defining the navigation w.r.t. ECEF frame angular rota-
tion vector with coordinates given in the NED navigation frame, for which we
reference to [2]:

~ωnen =

 vE
RN+h

− vN
RM+h

− vE tan φ
RN+h

 (6.33)

having, with

RN =
a(

1− e2 sin2 φ
) 1

2

the normal Earth radius; with

RM =
a
(
1− e2

)(
1− e2 sin2 φ

) 3
2

the meridian Earth radius and h stands for the height from the Earth ellip-
soid surface (all quantities are in meters); a and e stand for the Earth ellipsoid
semi-major axis and eccentricity, respectively, whereas with φ it is meant the
latitude in radians.

Now we have to find an expression for vE and vN , which are the East and
North velocities in the NED frame, that are function of the velocities in the
ECEF frame, which is our reference frame for KF mechanization.

This is easily done by involving the ECEF-to-NED rotation matrix defined
in section 2.2.2:

~v n = Rne~v
e vN

vE
vD

 = R2(−φ− π

2
)R3(λ)

 vX
vY
vZ


which yields

vN = vZcosφ− sinφ (vY sinλ+ vXcosλ)

vE = vY cosλ− vXsinλ

Plugging in the obtained expressions of vN and vE into equation 6.33 and
rotating back to ECEF frame yields
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~ωeen = Ren~ω
n
en (6.34)

= R3(−λ)R2(
π

2
+ φ)

 vE
RN+h

− vN
RM+h

−vE tan φ
RN+h



=

 − sinφ cosλ − sinλ − cosφ cosλ
− sinφ sinλ cosλ − cosφ sinλ

cosφ 0 − sinλ




vY cosλ−vXsinλ
RN+h

−vZcosφ−sinφ(vY sinλ+vXcosλ)
RM+h

− (vY cosλ−vXsinλ) tan φ
RN+h


=


sin λ[sin φ(vX cos λ+vY sin λ)−vZ cos φ]

RM+h
cos λ[sin φ(vX cos λ+vY sin λ)−vZ cos φ]

RM+h

− vXsinλ−vY cosλ
cos φ(RN+h)


that gives us an explicit expression of ~ωeen as a function of the ECEF veloci-
ties vX , vY and vZ ; the geodetic longitude λ and latitude φ and of RM , RN
and h. This expression can be plugged into equation 6.25 to correct for the
body-to-navigation frame angular rate.

6.2.3 Corrections due to displacement and misalignment
of GNSS-centered and INS-centered body frame

In our sensor set-up, the physical displacement of the INS sensor plate an the
two GNSS antenna on the car rooftop implies a different origin of the body-fixed
coordinate frames: one is defined as the phase center of the first GNSS antenna
and is aligned with the resulting baseline ~b12, whereas the other is defined as
the center of the axes spanned by the three gyroscopes and accelerometers of
the INS sensor plate. As one can see from Figure 6.7, which shows the physical
placement of the sensors in the test vehicle that has been used for tight coupling,
the INS sensors are placed near the handbrake structure, whereas the two GNSS
antennas are placed on the car rooftop, aligned with the along-track vehicle’s
middle axis.

Corrections for the sensor displacement: the lever-arm effect

The displacement of the INS sensor plate w.r.t. the phase center of the first
GNSS antenna causes that the acceleration values sensed by the accelerometers
doesn’t match with the one’s sensed on the GNSS antenna. Because the latter is
our reference origin point of the body-fixed frame, one has to calculate the cor-
responding acceleration values on the origin as a function of the IMU-measured
accelerations and angular rates.

Assuming the vehicle as a rigid body, so that the two body-fixed coordinate
frames remain at a fixed distance and orientation from each other, and defining
as 0GPS and 0IMU as their respective origin points and taking 0Inertial as the
origin of an inertial frame (see Figure 6.8), the position of the INS sensor plate
0IMU can be written as:
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Figure 6.7: Audi A6 Avant GNSS antennas and INS sensor placement

~x iGPS = ~x iIMU +~b iIG (6.35)

= ~x iIMU +Rib
~b bIG (6.36)

differentiating on both sides and applying the Coriolis law from equation 2.4
yields

~̇x iGPS = ~̇x iIMU + Ṙib
~b bIG +Rib

~̇b bIG

= ~̇x iIMU +RibΩ
b
ib
~b bIG (6.37)

where in the second equality it has been considered that ~̇bbIG = 0 because
the vector is constant in the body-fixed frame. Differentiating again yields

~̈x iGPS = ~̈x iIMU + ṘibΩ
b
ib
~b bIG +RibΩ̇

b
ib
~b bIG +RibΩ

b
ib
~̇b bIG

= ~̇x iIMU +RibΩ
b
ibΩ

b
ib
~b bIG (6.38)

where in the second equality the assumption that in our model the angular
rate vectors are constant (and thus Ω̇bib = 0) has been exploited. Rotating back
to the body-fixed frame yields
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Figure 6.8: Graphical representation of the GNSS and INS body-fixed coordi-
nate frame

Rbi ~̈x
i
GPS = Rbi

(
~̈x iIMU ++RibΩ

b
ibΩ

b
ib
~b bIG

)
~a bGPS = ~a bIMU +ΩbibΩ

b
ib
~b bIG (6.39)

which gives the desired relationship between the two accelerations in the
body-fixed frame. In order to express the acceleration in our reference body-
fixed frame (here denoted by 0GPS), one has to add the second term on the
right-hand side of equation 6.39 to the INS-referred acceleration ~abIMU in our
acceleration measurement model in equation 6.24.

Correction for the sensor misalignment

Besides different positioning of the sensor plates, another discrepancy may lie in
the heterogeneous orientation of the two coordinate frames. The GNSS-centered
coordinate frame has its X-axis aligned as the ~b12 baseline vector defined as the
line passing through the two phase centers of the two GNSS antennas, whereas
the INS sensor plate is aligned according to the accelerometers and gyroscope
placement. Nevertheless this misalignment is fixed and remains constant due to
the rigid body assumption, and it is simply corrected by pre-rotating both the
acceleration and angular rate measurements.

If one defines the rotation from the INS-oriented to the GNSS-oriented body-
fixed frame using Euler attitude angles (see section 2.2.3), the rotation matrix
can be defined as

RGPS
IMU = R1(∆ϕGI)R2(∆θGI)R3(∆ψGI) (6.40)

where ∆ϕGI, ∆θGI and ∆ψGI are the Euler attitude angles that describe
the rotation from the INS-oriented to the GNSS-oriented body-fixed frame. In
order to provide the inertial measurement in the latter frame, one has simply
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to apply the just defined rotation matrix to the acceleration and angular rate
measurements as:

~f bGPS = RGPS
IMU

~f bIMU (6.41)

~ω b
ib,GPS = RGPS

IMU~ω
b
ib, IMU (6.42)

where ~f b and ~ωbib are the acceleration and angular rate inertial measurements,
respectively.

6.3 Tight coupling results

In the following, the results of the tight coupling algorithm shall be presented.
As presented in section 5.1, the algorithm made use of carrier phase, pseudo-
range and Doppler measurements recorded with low-cost GNSS receivers and
of acceleration and angular rate measurements from a low-cost IMU composed
of microelectromechanical system (MEMS) sensors. In addition, in order to
perform RTK positioning, carrier phase and pseudorange measurements coming
from a virtual reference station (VRS) have been used. The position of this
VRS is up to 3km away from the track driven by the car. All the estimated
parameters have been calculated with the extended Kalman Filter approach
described in chapter 5.

The position estimate is shown on a satellite image in Figure 6.9. The
tightly coupled position estimation (orange track) is plotted against a reference
solution (green track). The white arrows advise for the vehicle’s direction of
motion. The route has took place in Wolfsburg (Germany), and the trip included
urban environments and a 300 meter long tunnel driven two times (upper right
enlargement).

Figure 6.10 shows the horizontal position error in the local North and East
components of the navigation frame w.r.t. the reference solution over time. As
one can see from the plot, there is an initial error of about half a meter on the
East component and about 1.4 meter in the North component. However, we
think that a good part of this offset is caused by the different positioning of the
origin point of the reference w.r.t. our solution (see section 6.2.3). Nevertheless,
the variability of the error over time suggests an incorrect fixing of the integer
ambiguities as a possible cause of a smaller part of the offset. The unsuccessful
initial fixing could be caused by the unmodeled carrier phase multipath error,
that strongly influenced on one hand the convergence speed of the float Kalman
filter and on the other hand the validity of the baseline drift parameter. All in
all, the filter algorithm is able to handle the initial offset and, thanks also to
the support of the inertial sensor, to bound the error during the whole trip.

Figure 6.11 depicts the heading attitude angle estimation over time for both
our tightly coupled and reference solution. Thanks to the dual GNSS antenna
setup and the inertial sensor, the vehicle’s attitude can be estimated very pre-
cisely. The enlargement shows the heading estimation during the first tunnel
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Figure 6.9: Google Earth plot of vehicle trajectory w.r.t. a reference solution

transit, where the satellite signal is completely absent. As one can see, the es-
timation remains quite accurate even for long GNSS signal interruptions (the
first trip lasted for about 30 seconds).

The cumulative distribution of the heading error is depicted in Figure 6.12.
The statistics show that we are able to bound the error below one degree up to
the 3σ value, namely 99,79% of the time.

Figure 6.13 shows the estimation of the horizontal velocities in the local
North and East components. As one can see, apart from the errors during the
two tunnel transits induced by incorrect bias estimation due to absence of GNSS
measurements, the velocity has been estimated quite accurately.

Finally, we wanted to give a motivation about estimating the code phase
multipath error. In urban environments, as the one depicted in Figure 6.14,
the multipath parameter can become relatively high. In the latter figure it is
shown also the multipath parameter estimation during a phase where the car
was standing at a traffic light (the location of the vehicle that refers to the MP
plot is depicted with a white dot). As one can see, the multipath parameter
can grow up to 10 meters in urban environments and shows some temporal
correlation that validates its estimation in our Kalman filter approach.

In conclusion we can say that we are able to perform GNSS/INS tight cou-
pling with an extended Kalman Filter in urban environments with high multi-
path scenarios even under street tunnels under total absence of GNSS signal re-
ception using low-cost GNSS and INS sensors. Relying strongly on carrier phase
measurements, where the correct fixing of the integer ambiguity is an essential
requirement for centimeter-level absolute positioning, the position accuracy is
strongly related to the the latter assumption. Even if we didn’t succeed in fix-
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Figure 6.10: Horizontal position error w.r.t. the reference solution in the local
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ing correctly the ambiguities, we have shown that the positioning error remains
bounded around the meter level. Thanks to the dual GNSS antenna approach,
we are able to estimate the vehicle’s attitude very precisely, shrinking the error
in the heading angle below one degree under the 3σ value.
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Appendix A

Nomenclature

A.1 Basic Quantities and Physics

N Natural numbers (1, 2, 3, . . .)
Z Integer numbers (. . . ,−2,−1, 0, 1, 2, . . .)
R Real numbers
C Complex numbers
j =

√
−1 Imaginary unit

<(z), =(z) Real and imaginary part of variable z
ẋ = dx/dt First derivative of x(t) w.r.t. to time
ẍ = d2x/dt2 Second derivative of x(t) w.r.t. to time
∂

∂x1
f(x1, x2, . . .) First partial derivative of function f(x1, x2, . . .)

~F Force [N]
P Power [W]
E Energy [J]
c = 299792458 m/s Speed of light [m/s]

A.2 Vectors, Matrices

ρ, ξ, η, . . . Vectors in any space (no geometrical meaning)
A,B, . . . Matrices (capital letters)
AT Transpose matrix
~r Geometrical vector (up to three dimensions)
1 Identity matrix
a · b Dot product of vectors a and b (i.e. a · b = aT b = 〈a, b〉)
a ∧ b Cross product of vectors a and b

‖a‖ Euclidean norm of a vector (=
√∑

i a
2
i )

‖a‖2W Squared norm with metric W (= aTWa)
a ⊥ b Orthogonality between vector a and b
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det(A) Determinant of matrix A

gradf(x) Gradient of function f(x) (i.e. grad(f) = ( ∂f∂x1
, ∂f∂x2

, . . .)T )

Trace[A] Trace of matrix A (=
∑
i aii)

R1(α) =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 Rotation matrix with the x-axis as the rotation axis

R2(β), R3(γ) Rotation matrices w.r.t. the y- and z-axis

A.3 Positioning

xk Quantity x referring to satellite k
xi Quantity x referring to receiver/ground station i
K Number of satellites
~ri Position vector of receiver i [m]
~r k Position vector of satellite k [m]
δi Clock offset of receiver i [s]
ρki Pseudorange of satellite k to receiver i [m]
ρi Vector containing all pseudoranges (= (ρ1i , . . . , ρ

K
i )T )

φki Phase measurement [cycles]
φkij Single difference phase measurements (φkij = φki − φkj ) [cycles]
φklij Double difference phase measurements

(φklij = (φki − φkj )− (φli − φlj)) [cycles]
Φi Vector containing all phase measurements of receiver i
Nk
i Integer ambiguity [ ]

~e ki Unit vector pointing from satellite k to the receiver i
ekx, e

k
y , e

k
z Components of the unit vector ~e k

H =


(
~e 1
)T

1
...

...(
~e K
)T

1

 Geometry matrix

E Elevation angle [rad]
ξi Space-time vector, i.e. vector containing the (ECEF-) position

and clock offset of receiver i (ξi = (xi, yi, zi, cδi)
T ) [m]

χi Time-derivative of the space-time vector ξi, i.e. vector
containing the velocity and clock drift of

receiver i (χi = (vi,x, vi,y, vi,z, cδ̇i)
T ) [m/s]

Iki Ionospheric delay [m]
T ki Tropospheric delay [m]
fD Doppler shift [Hz]
Re Radius of the earth [m]

A.4 Random Variables, Estimation
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pX(x) Probability density function of r.v. X (short p(x))
pX|Y (x|y) Conditional probability density function of r.v. X given r.v. Y

ΦX(x) =

ˆ x

−∞
pX(y)dy Cumulative distribution function of r.v. X

Φ(x) ≺ ΦO(x) Distribution over-bound (i.e. cdf Φ is overbound by ΦO)
E [x] Expected value of x
var[x] Variance of x
x̂ Estimate of quantity x

C Covariance matrix (Cx = E
[(
x− E [x]

)(
x− E [x]

)T ]
)

W = C−1 Weighting matrix v
N0 Noise density [W/Hz]
ε, η, n Noise (could be time-continuous or -discrete functions of time)
A, Ā Event and the corresponding complementary event
A ∨ B Event A or event B
Kt Kalman gain at time-step t
Φt State-transition matrix at time-step t
Ht Measurement matrix at time-step t

A.5 Signal Processing

u⊕ v Modulo 2 addition (0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1)
xt−1, xt, xt+1, . . . Discrete-time signal
sinc(x) = sin(x)/x Sinus cardinalis of x
Ts = 1/fs Sampling interval [s] and sampling rate [Samples/s]
Tc = 1/fc Chip length [s] and chipping rate [Chips/s]
ωc Carrier frequency [rad/s]
Ti Predetection integration interval [s]
p(t) Rectangular pulse (= rect(x/Tc))
bm Navigation bit
C(.) Correlation function (of sequences and between received

signal and local copy, e.g. Early correlation result: CE(∆τ))
R(τ) Autocorrelation function (of signals R(τ) = E [s(t)s(t+ τ)])

S(f) =

ˆ ∞

−∞
R(τ)e−j2πfτdτ Power spectral density

f̄ =

(ˆ
f2 |S(f)|2 df

)1/2

Gabor bandwidth

BL Filter loop bandwidth [Hz]
cosb(m,n)(t) = sign

(
cos(2πt/Ts)

)
BOC-signal (cosine-phased)

sinb(m,n)(t) = sign
(
sin(2πt/Ts)

)
BOC-signal (sine-phased)

δi,j Kronecker delta (δi,j = 1 if i = j, and 0 otherwise)
F (.) Transformed function f(t) (e.g. F (z), F (w), F (s))
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